3,287 research outputs found

    The biomechanical role of the chondrocranium and sutures in a lizard cranium

    Get PDF
    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae. We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocraniumare greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocraniumunless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending

    Comparative cranial biomechanics in two lizard species: impact of variation in cranial design

    Get PDF
    Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards

    Adolescent Positivity and Future Orientation, Parental Psychological Control, and Young Adult Internalising Behaviours during COVID-19 in Nine Countries

    Get PDF
    The COVID-19 pandemic disrupted many young adults’ lives educationally, economically, and personally. This study investigated associations between COVID-19-related disruption and perception of increases in internalising symptoms among young adults and whether these associations were moderated by earlier measures of adolescent positivity and future orientation and parental psychological control. Participants included 1329 adolescents at Time 1, and 810 of those participants as young adults (M age = 20, 50.4% female) at Time 2 from 9 countries (China, Colombia, Italy, Jordan, Kenya, the Philippines, Sweden, Thailand, and the United States). Drawing from a larger longitudinal study of adolescent risk taking and young adult competence, this study controlled for earlier levels of internalising symptoms during adolescence in examining these associations. Higher levels of adolescent positivity and future orientation as well as parent psychological control during late adolescence helped protect young adults from sharper perceived increases in anxiety and depression during the first nine months of widespread pandemic lockdowns in all nine countries. Findings are discussed in terms of how families in the 21st century can foster greater resilience during and after adolescence when faced with community-wide stressors, and the results provide new information about how psychological control may play a protective role during times of significant community-wide threats to personal health and welfare

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    The Two-dimensional XMM-Newton Group Survey: z<0.012 groups

    Get PDF
    We present the results of the 2-dimensional XMM-Newton Group Survey (2dXGS), an archival study of nearby galaxy groups. In this paper we consider eleven nearby systems (z<0.012) in Mulchaey et al. (2003), which span a broad range in X-ray luminosity from 10^40 to 10^43 ergs/s. We measure the iron abundance and temperature distribution in these systems and derive pressure and entropy maps. We find statistically significant evidence for structure in the entropy and pressure of the gas component of seven groups on the 10-20% level. The XMM-Newton data for the three groups with best statistics also suggest patchy metalicity distributions within the central 20--50 kpc of the brightest group galaxy, probed with 2-10 kpc resolution. This provides insights into the processes associated with thermalization of the stellar mass loss. Analysis of the global properties of the groups reveals a subclass of X-ray faint groups, which are characterized by both higher entropy and lower pressure. We suggest that the merger history of the central elliptical is responsible for both the source and the observed thermodynamical properties of the hot gas of the X-ray faint groups.Comment: 18 pages, ApJ, 646, 143, 200

    Why are the K dwarfs in the Pleiades so Blue?

    Full text link
    The K dwarfs in the Pleiades fall nearly one half magnitude below a main sequence isochrone when plotted in a color-magnitude diagram utilizing V magnitude as the luminosity index and B-V as the color index. This peculiarity has been known for forty years but has gone unexplained and mostly ignored. When compared to Praesepe members, the Pleiades K dwarfs again are subluminous (or blue) in a color-magnitude diagram using B-V as the color index. However, using V-I as the color index, stars in the two clusters are coincident to M_V ~ 10; using V-K as the color index, Pleiades late K and M stars fall above the main sequence locus defined by Praesepe members. We believe that the anomalous spectral energy distributions for the Pleiades K dwarfs, as compared to older clusters, are a consequence of rapid stellar rotation and may be primarily due to spottedness. If so, the required areal filling factor for the cool component has to be very large (=> 50%). Weak-lined T Tauri stars have similar color anomalies, and we suspect this is a common feature of all very young K dwarfs (sp. type > K3). The peculiar spectral energy distribution needs to be considered in deriving accurate pre-main sequence isochrone-fitting ages for clusters like the Pleiades since the age derived will depend on the temperature index used.Comment: 41 pages, 15 figures, AASTeX5.0. Accepted 05 May 2003; Scheduled for publication in the Astronomical Journal (August 2003

    MR imaging of clear cell sarcoma (malignant melanoma of the soft parts): A multicenter correlative MRI-pathology study of 21 cases and literature review

    Get PDF
    Objective. To evaluate MR imaging and pathology findings in order to define the characteristic features of clear cell sarcoma of the soft tissues (malignant melanoma of the soft parts). Design and patients. MR examinations of 21 patients with histologically proven clear cell sarcoma of the musculoskeletal system were retrospectively reviewed and assessed for shape, homogeneity, delineation, signal intensities on T1- and T2-weighted images, contrast enhancement, relationship with adjacent fascia or tendon, secondary bone involvement, and intratumoral necrosis. In 19 cases the pathology findings were available for review and for a comparative MR-pathology study. Results. On T1-weighted images, lesions were isointense (n=3), hypointense (n=7) or slightly hyperintense to muscle (n=11). Immunohistochemical examination was performed in 17 patients. All 17 specimens showed positivity for HMB-45 antibody. In nine of 11 lesions with slightly increased signal intensity on T1-weighted images, a correlative MR imaging-pathology study was possible. All nine were positive to HMB-45 antibody. Conclusions. Clear cell sarcoma of the musculoskeletal system often has a benign-looking appearance on MR images. In up to 52% of patients, this lesion with melanocytic differentiation has slightly increased signal intensity on T1-weighted images compared with muscle. As the presence of this relative higher signal intensity on T1-weighted images is rather specific for tumors displaying melanocytic differentiation, radiologists should familiarize themselves with this rare entity and include it in their differential diagnosis when confronted with a well- defined, homogeneous, strongly enhancing mass with slightly higher signal intensity compared with muscle on native T1-weighted images

    Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics

    Get PDF
    Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named ‘OxoScan-MS’, identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples
    corecore