363 research outputs found

    Reducing the drag: creating v formations through slow scholarship and story

    Get PDF
    Every seed destroys its container, or else there would be no fruition (Scott-Maxwell, 1979). We are three women working across two Australian universities. Frustrated at the deadening, withering nature and containment of the neoliberal university, and inspired by the wisdom of slow scholarship and the cooperative reciprocity inherent in the V formations adopted by groups of flying birds to boost vital energy, our chapter encapsulates our efforts to ‘care for self and others’ and ‘count what others don’t’. It follows our attempts to resist the insidious, diminishing drag of metric-based audits and managerialism. Having joyfully discovered we have ‘outgrown’ narrow academic containers of measurement, comparison, and productivity, we are responding to our longing to connect and to ‘be’ differently in academia. Our resistance is characterised by efforts to listen and converse in meaningful ways, ways that speak our lives into the academy. For over a year we have been initiating conversations with a trusted group of colleagues and acquiring responsive, personal and aesthetic ways to address and reconcile our personal/professional lives. Inviting the reader into our deliberate storying and de-storying of our lived experience whilst practicing a politics of care, collaboration and authenticity, we are subverting what it means to be productive and accountable and what it means to be an academic. And in so doing we are seeding new and fruitful ways of working. We are unearthing our individual and collective voice, and creating and expanding safe spaces for scholarly, professional and personal disclosure and meaning-making

    Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    Get PDF
    We present the results of an early elementary study (K–1) that used children's drawings to examine children's understanding of plant structure and function.This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings

    Suppression of Intestinal Epithelial Cell Chemokine Production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 Is Mediated by Secreted Bioactive Molecules

    Get PDF
    Host intestinal epithelial cells (IEC) present at the gastrointestinal interface are exposed to pathogenic and non-pathogenic bacteria and their products. Certain probiotic lactic acid bacteria (LAB) have been associated with a range of host-immune modulatory activities including down-regulation of pro-inflammatory gene expression and cytokine production by IEC, with growing evidence suggesting that these bacteria secrete bioactive molecules with immunomodulatory activity. The aim of this study was to determine whether two lactobacilli with immunomodulatory activity [Lactobacillus rhamnosus R0011 (Lr) and Lactobacillus helveticus R0389 (Lh)], produce soluble mediators able to influence IEC responses to Pattern Recognition Receptor (PRR) ligands and pro-inflammatory cytokines [Tumor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β)], signals inducing IEC chemokine production during infection. To this end, the effects of cell-free supernatants (CFS) from Lr and Lh on IEC production of the pro-inflammatory chemokines interleukin (IL)-8 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by a range of host- or pathogen-derived pro-inflammatory stimuli were determined, and the impact on human HT-29 IEC and a primary IEC line (rat IEC-6) was compared. The Lr-CFS and Lh-CFS did not significantly modulate basal IL-8 production from HT-29 IECs or CINC-1 production from IEC-6 cells. However, both Lr-CFS and Lh-CFS significantly down-regulated IL-8 production from HT-29 IECs challenged with varied PRR ligands. Lr-CFS and Lh-CFS had differential effects on PRR-induced CINC-1 production by rat IEC-6 IECs, with no significant down-regulation of CINC-1 observed from IEC-6 IECs cultured with Lh-CFS. Further analysis of the Lr-CFS revealed down-regulation of IL-8 production induced by the pro-inflammatory cytokines IL-1β and TNFα Preliminary characterization of the bioactive constituent(s) of the Lr-CFS indicates that it is resistant to treatment with DNase, RNase, and an acidic protease, but is sensitive to alterations in pH. Taken together, these results indicate that these lactobacilli secrete bioactive molecules of low molecular weight that may modulate host innate immune activity through interactions with IEC

    Controls on the Silicon Isotope Composition of Diatoms in the Peruvian Upwelling

    Get PDF
    The upwelling area off Peru is characterized by exceptionally high rates of primary productivity, mainly dominated by diatoms, which require dissolved silicic acid (dSi) to construct their frustules. The silicon isotope compositions of dissolved silicic acid (δ 30 Si dSi ) and biogenic silica (δ 30 Si bSi ) in the ocean carry information about dSi utilization, dissolution, and water mass mixing. Diatoms are preserved in the underlying sediments and can serve as archives for past nutrient conditions. However, the factors influencing the Si isotope fractionation between diatoms and seawater are not fully understood. More δ 30 Si bSi data in today’s ocean are required to validate and improve the understanding of paleo records. Here, we present the first δ 30 Si bSi data (together with δ 30 Si dSi ) from the water column in the Peruvian Upwelling region. Samples were taken under strong upwelling conditions and the bSi collected from seawater consisted of more than 98% diatoms. The δ 30 Si dSi signatures in the surface waters were higher (+1.7‰ to +3.0‰) than δ 30 Si bSi (+1.0‰ to +2‰) with offsets between diatoms and seawater (Δ 30 Si) ranging from −0.4‰ to −1.0‰. In contrast, δ 30 Si dSi and δ 30 Si bSi signatures were similar in the subsurface waters of the oxygen minimum zone (OMZ) as a consequence of a decrease in δ 30 Si dSi . A strong relationship between δ 30 Si bSi and [dSi] in surface water samples supports that dSi utilization of the available pool (70 and 98%) is the main driver controlling δ 30 Si bSi . A comparison of δ 30 Si bSi samples from the water column and from underlying core-top sediments (δ 30 Si bSi_ sed. ) in the central upwelling region off Peru (10°S and 15°S) showed good agreement (δ 30 Si bSi_ sed. = +0.9‰ to +1.7‰), although we observed small differences in δ 30 Si bSi depending on the diatom size fraction and diatom assemblage. A detailed analysis of the diatom assemblages highlights apparent variability in fractionation among taxa that has to be taken into account when using δ 30 Si bSi data as a paleo proxy for the reconstruction of dSi utilization in the region

    No Change in Perceptual or Chronotropic Outcome When Altering Preferred Step Frequency for a Short Duration

    Get PDF
    IIntroduction: Millions of individuals incorporate jogging into their physical activity routines as a leisurely pursuit and as a way to achieve positive health outcomes. People appear to choose jogging speed and the associated step frequency on pure, natural preference. Understandably, kinesthetics are important, but another important underlying factor is metabolic cost. The purpose of this work was to investigate if preferred step frequency (at a preferred jogging pace) also minimizes perceived effort (Borg Rating of Perceived Exertion, 6-20; RPE) and chronotropic stress (heart rate; HR) during a ten-minute activity bout when compared with step frequencies altered by 5%. Methods: Recreationally-trained male subjects underwent two testing visits. The first visit was used to establish RPE and HR responses during a 10-minute jogging activity at preferred speed and step frequency. On a subsequent visit, between two and four days later, with preferred speed maintained, subjects were guided by metronome to strike at either 95% or 105% of their preferred step frequency. The 10-minute runs were randomized, crossed-over, and separated by 20 minutes. RPE and HR were analyzed by repeated measures ANOVA. Results: Fourteen subjects (age: 21.1 ± 0.95; body mass index: 23.2 ± 2.5) enrolled. Preferred jogging speed (speed. 6.4 ± 1.0 miles per hour; 10.2 ± 1.6 kilometers per hour) and step frequency (steps. 161.2 ± 10.3 steps/minute) were determined at the first visit, along with RPE (11.3 ± 1.7) and HR (166.4 ± 12.7). At the second visit, preferred speed was maintained while the frequency of foot-strike was altered. Neither differences in RPE (p = 0.252; 11.3 ± 1.7, 11.6 ± 1.9, 11.8 ± 1.5) nor HR (p = 0.547; 166.4 ± 12.7, 164.7 ± 14.9, 165.2 ± 15.3) were different when comparing the preferred, 95%, and 105% step frequency trials, respectively. Although anecdotal, some subjects verbalized displeasure with the change in pace and most all appeared to markedly alter the initial foot strike phase of the gait to meet the directed foot strike tempo. Discussion: Our data must be interpreted cautiously. While altering step frequency by 5% for a short duration does not appear to alter an individual’s RPE or HR appreciably, the result during longer duration activity may not be the same. In addition, the implications for biomechanical loading and metabolic cost were not presently investigated

    Triphasic waveforms are superior to biphasic waveforms for transthoracic defibrillation Experimental studies

    Get PDF
    AbstractObjectivesOur objective was to evaluate the efficacy of triphasic waveforms for transthoracic defibrillation in a swine model.BackgroundTriphasic shocks have been found to cause less post-shock dysfunction than biphasic shocks in chick embryo studies.MethodsAfter 30 s of electrically induced ventricular fibrillation (VF), each pig in part I (n = 32) received truncated exponential biphasic (7.2/7.2 ms) and triphasic (4.8/4.8/4.8 ms) transthoracic shocks. Each pig in part II (n = 14) received biphasic (5/5 ms) and triphasic shocks (5/5/5 ms). Three selected energy levels (50, 100, and 150 J) were tested for parts I and II. Pigs in part III (n = 13) received biphasic (5/5 ms) and triphasic (5/5/5 ms) shocks at a higher energy (200 and 300 J). Although the individual pulse durations of these shocks were equal, the energy of each pulse varied. Nine pigs in part I also received shocks where each individual pulse contained equal energy but was of a different duration (biphasic 3.3/11.1 ms; triphasic 2.0/3.2/9.2 ms).ResultsTriphasic shocks of equal duration pulses achieved higher success than biphasic shocks at delivered low energies: <40 J: 38 ± 5% triphasic vs. 19 ± 4% biphasic (p < 0.01); 40 to <50 J: 66 ± 7% vs. 42 ± 7% (p < 0.01); and 50 to <65 J: 78 ± 4% vs. 54 ± 5% (p < 0.05). Shocks of equal energy but different duration pulses achieved relatively poor success for both triphasic and biphasic waveforms. Shock-induced ventricular tachycardia (VT) and asystole occurred less often after triphasic shocks.ConclusionsTriphasic transthoracic shocks composed of equal duration pulses were superior to biphasic shocks for VF termination at low energies and caused less VT and asystole

    G Protein Activation without a GEF in the Plant Kingdom

    Get PDF
    Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the “self-activating” trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways

    Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women

    Get PDF
    © 2021, The Author(s). Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256, 523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p = 4 × 10−17), arthritis (GDF5p = 4 × 10−13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing
    corecore