2,766 research outputs found

    Impacts of elevated atmospheric ozone on peatland below-ground DOC characteristics

    Get PDF
    Rising concentrations of tropospheric ozone are having detrimental impacts on the growth of crop and forest species and some studies have reported inhibition of the allocation of carbon below ground. The effects of ozone on peatland ecosystems have received relatively little attention, despite their importance within the global carbon cycle. During this study, cores from a Welsh minerotrophic fen and ombrotrophic bog were exposed to four ambient/ elevated ozone concentration regimes representing current and predicted 2050 profiles. A large and significant reduction in the concentration of porewater dissolved organic carbon (DOC) was recorded in the fen cores exposed to the elevated ozone concentrations (up to −55%), with a concurrent shift to a higher molecularweight of the remaining soil carbon. No effects of ozone on DOC concentrations or characteristics were recorded for the bog cores. The data suggest higher ozone sensitivity of plants growing in the fen-type peatland, that the impacts on the vegetation may affect soil carbon characteristics through a reduction in root exudates and that theremay have been a shift in the source of substrate DOC for microbial consumption from vegetation exudates to native soil carbon. Theremay also have been a direct effect of ozone molecules reacting with soil organic matter after being transported into the soil through the aerenchyma tissue of the overlying vegetation. These qualitative changes in the soil carbon in response to elevated ozone may have important implications for carbon cycling in peatland ecosystems, and therefore climate change

    Multinationals in Developing Communities: how EU Multinationals build Social Capital in Poland

    Get PDF
    Corporate Social Responsibility (CSR) is usually an area that does not lend itself easily to inter-company or cross-country analysis. This paper is an attempt to provide some metrics of multinational CSR drawing on the recent literature on social capital. We look at the self-reporting of social engagement in Poland by European multinational firms with operations there, mapping the configurations of declared engagement. Such social engagements are an important component of how these companies contribute to social capital in the communities within which they operate. We find high performance by some firms, with stronger performance depending upon the multinational’s country of origin. Two case studies - on Bayer and Danone - detailing different but successful approaches to social capital building are given.Social Capital, Corporate Social Responsibility, Business Ethics, Poland, Multinational companies.

    The greenhouse gas (GHG) emissions associated with aquatic carbon removal during drinking water treatment

    Get PDF
    Peatlands and other terrestrial ecosystems export large amounts of dissolved organic carbon (DOC) to freshwater ecosystems. In catchments used for supplying drinking water, water treatment works (WTWs) can remove large quantities of this organic matter, and can therefore play a unique modifying role in DOC processing and associated greenhouse gas (GHG) emissions within the fluvial system. During this study we quantified the GHG emissions due to processes associated with carbon (C) removal during water treatment at four contrasting WTWs in the UK. Our results demonstrate that the removal of DOC from raw water supplies via coagulation, leading to the formation of sludge, usually makes it less susceptible to short-term oxidation when compared to DOC remaining in the fluvial system. Although this could be considered a means of reducing CO2 emissions from waterborne carbon, the current practise of land spreading of sludge is unlikely to represent a long-term C sink and therefore water treatment probably only delays the rate at which fluvial C re-enters the atmosphere. Furthermore, we estimate that indirect CO2 missions resulting from electricity use during water treatment, together with the use of chemicals and CO2 degassing from the water during treatment, far outweigh any potential CO2 reductions associated with DOC removal. Thus, the post-treatment handling of sludge has the potential to mitigate, but not to negate, GHG emissions associated with water treatment processes

    Transformations in DOC along a source to sea continuum; impacts of photo-degradation, biological processes and mixing

    Get PDF
    Peatlands export significant amounts of dissolved organic carbon (DOC) to freshwaters, but the quantity of DOC reaching marine environments is typically less than the input to the fluvial system due to processing within the water column. Key removal processes include photo-chemical degradation, and heterotrophic bacterial respiration. In this study we examined these processes using 14C-labelled DOC to quantify the extent of DOC breakdown and to determine its fate following irradiation under controlled laboratory conditions. We examined the influence of microbial processes occurring within the water column, the potential role of stream-bed biofilms, and the possible modifying effects of downstream mixing, as DOC in water from the peatland encounters runoff from upland mineral soils (“Mountain”), nutrient-rich runoff from agricultural soils, and seawater in an estuary. Our results demonstrated conservative mixing of DOC from Peatland and Mountain waters but interactive effects when Peatland water was mixed with Agricultural and Estuary waters and exposed to solar radiation. The mixing of Peatland and Agricultural waters led to net DOC production, suggesting that DOC was only partially degraded by solar radiation and that the products of this might have fuelled autotrophic microbial growth in the samples. The mixing of Peatland water with saline estuary water resulted in net DOC loss following irradiation, suggesting a role for sunlight in enhancing the flocculation of DOC to particulate organic carbon (POC) in saline environments

    Understanding the performance of nano-structured ferritic alloys through micro-mechanical testing

    Get PDF
    Oxide dispersion strengthened (ODS) steels are one of the most promising candidate materials for fuel cladding tubes, in GenIV nuclear reactors, and plasma facing components for tritium breeding blankets in fusion reactors. Although first developed during the 1960\u27s, recent research has demonstrated an improved high temperature strength and irradiation resistance over the more conventional high chromium reduced activation ferritic/martensitic (RAF/M) steels. This improved performance is obtained through microstructures that contain a high density of insoluble nanoscale oxides dispersed in the ferrite matrix (typically 2 -10 nm yttrium- titanium oxides). However, concerns remain over their use in future nuclear application and the following questions are of key issue; Due to the mechanical alloying and powder processing manufacturing routes typically used the microstructures can display significant inhomogeneity in local chemistry, grain size and oxide distribution. How this affects local mechanical properties needs to be measured. The exact mechanisms of strengthening (solid solution, grain refinement or hard particle hardening) are not well understood and individual contributions need to be assessed for better alloy design. How the mechanical properties of these alloys are affected by radiation damage is not well documented and is must be known if they are to be used in a nuclear environment. This work uses state of the art nanoindentation and micro-cantilever bending experiments on a series of systematically varied nanostructured ferritic alloys based on a Fe-14Cr-3W-0.2Ti-0.25Y2O3 in both as processed and irradiated conditions to answer these questions Nanoindentation was used to investigate the hardness and elastic modulus of each specimen, and effect of indent size on hardness. Indentation modulus was found to be similar for each sample but the nanocrystalline samples showed higher levels of hardness, confirmed using microscopic techniques. The variation in hardness was seen to increase in oxide containing samples. This was investigated using EBSD and EDX, and was determined to be caused by a pronounced heterogeneity of the microstructure. While Hall-Petch strengthening and changes in the local chemistry had some effect on the measured hardness, the most likely cause of the large variation in local hardness was heterogeneity in the nanoscale oxide population. By using TEM and atom probe tomography this inhomogeneous dispersion of the oxide particles can be demonstrated. Nanoindentation was also used to measure the strain rate sensitivity and creep rate of each specimen, where it is shown that the oxide containing alloy has superior performance. To simulate neutron damage samples were implanted with 2MeV protons to a peak damage level of 0.2dpa at 20μm depth below the surface. Samples were then rotated 90 degrees and polished to produce a cross section through the damaged layer. The cross-sectional surface of the irradiated layer was then exposed and inclined linear arrays of 250 nm deep indents were placed across the damage profile. 14WT (non-oxide containing) revealed a clear proton damage profile in plots of hardness against irradiation depth, No appreciable hardening was observed in either 14YWT specimens, attributed to fine dispersion of nanoscale oxides providing a high number density of defect sink sites. Micro-cantilevers were fabricated out of the irradiated layer cross-section. Larger micro-cantilevers, with 5 μm beam depth, were place with their beam centre at 0.026 dpa. Smaller micro-cantilevers, with 1.5 μm beam depth, were placed with their beam centre at 0.2 dpa. Both the large and the small micro-cantilevers fabricated in 14WT (non-Oxide containing) displayed significant irradiation hardening (from 0.5GPa to 1.04GPa yield stress) while in the oxide containing variant, irradiation hardening is suppressed. This paper will demonstrate that when the size effects inherent in these tests are accounted for the data produced is comparable to bulk mechanical testing and suggest some key next steps if these alloys are to be pursued as nuclear materials

    Novel African trypanocidal agents: membrane rigidifying peptides

    Get PDF
    The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes

    High eccentricity planets from the Anglo-Australian Planet Search

    Get PDF
    We report Doppler measurements of the stars HD187085 and HD20782 which indicate two high eccentricity low-mass companions to the stars. We find HD187085 has a Jupiter-mass companion with a ~1000d orbit. Our formal `best fit' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on RMS and chi^2) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD187085. Our dataset for HD20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD20782 has M sin i=1.77+/-0.22M_JUP, an orbital period of 595.86+/-0.03d and an orbit with an eccentricity of 0.92+/-0.03. The detection of such high-eccentricity (and relatively low velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high eccentricity systems.Comment: to appear in MNRA

    Protect Your Home from Wildfire: Ember Awareness Checklist

    Get PDF
    Many communities in the western U.S. are fire-prone, as are many other areas in the world. These areas will always face wildfire, and will likely experience an increased number of extreme wildfire events in the future, resulting in substantial economic, social, and environmental impacts. Over the last 10 years, 3.4 to 10.1 million acres have burned annually in the U.S. In terms of area burned, 2017 has been one of the largest fire years in the last decade, with over 8.5 million acres burned across the U.S. (NIFC). Figure 1 shows the distribution of wildfires in the western U.S. in 2017. Unprecedented amounts of live and dead fuel, combined with warmer University of Arizona Cooperative Extension has also produced fire mitigation education materials to help communities understand how to coexist with wildfire. Please visit https:// extension.arizona.edu/pubs and type “wildfire” in the search box for specific Firewise® defensible space materials. This fact sheet was developed to help you and members of your community understand the danger of embers during a wildfire and take proactive steps to reduce the risk

    The quick and the dead: when reaction beats intention

    Get PDF
    Everyday behaviour involves a trade-off between planned actions and reaction to environmental events.Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a ‘reactive advantage’ in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival

    Review of best management practices for aquatic vegetation control in stormwater ponds, wetlands, and lakes

    Get PDF
    Auckland Council (AC) is responsible for the development and operation of a stormwater network across the region to avert risks to citizens and the environment. Within this stormwater network, aquatic vegetation (including plants, unicellular and filamentous algae) can have both a positive and negative role in stormwater management and water quality treatment. The situations where management is needed to control aquatic vegetation are not always clear, and an inability to identify effective, feasible and economical control options may constrain management initiatives. AC (Infrastructure and Technical Services, Stormwater) commissioned this technical report to provide information for decision- making on aquatic vegetation management with in stormwater systems that are likely to experience vegetation-related issues. Information was collated from a comprehensive literature review, augmented by knowledge held by the authors. This review identified a wide range of management practices that could be potentially employed. It also demonstrated complexities and uncertainties relating to these options that makes the identification of a best management practice difficult. Hence, the focus of this report was to enable users to screen for potential options, and use reference material provided on each option to confirm the best practice to employ for each situation. The report identifies factors to define whether there is an aquatic vegetation problem (Section 3.0), and emphasises the need for agreed management goals for control (e.g. reduction, mitigation, containment, eradication). Resources to screen which management option(s) to employ are provided (Section 4.0), relating to the target aquatic vegetation, likely applicability of options to the system being managed, indicative cost, and ease of implementation. Initial screening allows users to shortlist potential control options for further reference (Section 5.0). Thirty-five control options are described (Section 5.0) in sufficient detail to consider applicability to individual sites and species. These options are grouped under categories of biological, chemical or physical control. Biological control options involve the use of organisms to predate, infect or control vegetation growth (e.g. classical biological control) or manipulate conditions to control algal growth (e.g. pest fish removal, microbial products). Chemical control options involve the use of pesticides and chemicals (e.g. glyphosate, diquat), or the use of flocculants and nutrient inactivation products that are used to reduce nutrient loading, thereby decreasing algal growth. Physical control options involve removing vegetation or algal biomass (e.g. mechanical or manual harvesting), or setting up barriers to their growth (e.g. shading, bottom lining, sediment capping). Preventative management options are usually the most cost effective, and these are also briefly described (Section 6.0). For example, the use of hygiene or quarantine protocols can reduce weed introductions or spread. Catchment- based practices to reduce sediment and nutrient sources to stormwater are likely to assist in the avoidance of algal and possibly aquatic plant problems. Nutrient removal may be a co-benefit where harvesting of submerged weed biomass is undertaken in stormwater systems. It should also be considered that removal of substantial amounts of submerged vegetation may result in a sudden and difficult-to-reverse s witch to a turbid, phytoplankton dominated state. Another possible solution is the conversion of systems that experience aquatic vegetation issues, to systems that are less likely to experience issues. The focus of this report is on systems that receive significant stormwater inputs, i.e. constructed bodies, including ponds, amenity lakes, wetlands, and highly-modified receiving bodies. However, some information will have application to other natural water bodies
    corecore