88 research outputs found

    Climatological predictions of the auroral zone locations driven by moderate and severe space weather events

    Get PDF
    Auroral zones are regions where, in an average sense, aurorae due to solar activity are most likely spotted. Their shape and, similarly, the geographical locations most vulnerable to extreme space weather events (which we term ‘danger zones’) are modulated by Earth’s time-dependent internal magnetic field whose structure changes on yearly to decadal timescales. Strategies for mitigating ground-based space weather impacts over the next few decades can benefit from accurate forecasts of this evolution. Existing auroral zone forecasts use simplified assumptions of geomagnetic field variations. By harnessing the capability of modern geomagnetic field forecasts based on the dynamics of Earth’s core we estimate the evolution of the auroral zones and of the danger zones over the next 50 years. Our results predict that space-weather related risk will not change significantly in Europe, Australia and New Zealand. Mid-to-high latitude cities such as Edinburgh, Copenhagen and Dunedin will remain in high-risk regions. However, northward change of the auroral and danger zones over North America will likely cause urban centres such as Edmonton and Labrador City to be exposed by 2070 to the potential impact of severe solar activity

    Clustering of magnetic reconnection exhausts in the solar wind: An automated detection study

    Get PDF
    CONTEXT: Magnetic reconnection is a fundamental process in astrophysical plasmas that enables the dissipation of magnetic energy at kinetic scales. Detecting this process in situ is therefore key to furthering our understanding of energy conversion in space plasmas. However, reconnection jets typically scale from seconds to minutes in situ, and as such, finding them in the decades of data provided by solar wind missions since the beginning of the space era is an onerous task. AIMS: In this work, we present a new approach for automatically identifying reconnection exhausts in situ in the solar wind. We apply the algorithm to Solar Orbiter data obtained while the spacecraft was positioned at between 0.6 and 0.8 AU and perform a statistical study on the jets we detect. METHODS: The method for automatic detection is inspired by the visual identification process and strongly relies on the Walén relation. It is enhanced through the use of Bayesian inference and physical considerations to detect reconnection jets with a consistent approach. RESULTS: Applying the detection algorithm to one month of Solar Orbiter data near 0.7 AU, we find an occurrence rate of seven jets per day, which is significantly higher than in previous studies performed at 1 AU. We show that they tend to cluster in the solar wind and are less likely to occur in the tenuous solar wind (< 10 cm−3 near 0.7 AU). We discuss why the source and the degree of Alfvénicity of the solar wind might have an impact on magnetic reconnection occurrence. CONCLUSIONS: By providing a tool to quickly identify potential magnetic reconnection exhausts in situ, we pave the way for broader statistical studies on magnetic reconnection in diverse plasma environments

    Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event.

    Get PDF
    The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail

    Understanding Precatalyst Activation and Speciation in Manganese-Catalyzed C-H Bond Functionalization Reactions

    Get PDF
    An investigation into species formed following precatalyst activation in Mn-catalyzed C-H bond functionalization reactions is reported. Time-resolved infrared spectroscopy demonstrates that light-induced CO dissociation from precatalysts [Mn(C^N)(CO)4] (C^N = cyclometalated 2-phenylpyridine (1a), cyclometalated 1,1-bis(4-methoxyphenyl)methanimine (1b)) in a toluene solution of 2-phenylpyridine (2a) or 1,1-bis(4-methoxyphenyl)methanimine (2b) results in the initial formation of solvent complexes fac-[Mn(C^N)(CO)3(toluene)]. Subsequent solvent substitution on a nanosecond time scale then yields fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)], respectively. When the experiments are performed in the presence of phenylacetylene, the initial formation of fac-[Mn(C^N)(CO)3(toluene)] is followed by a competitive substitution reaction to give fac-[Mn(C^N)(CO)3(2)] and fac-[Mn(C^N)(CO)3(η2-PhC2H)]. The fate of the reaction mixture depends on the nature of the nitrogen-containing substrate used. In the case of 2-phenylpyridine, migratory insertion of the alkyne into the Mn-C bond occurs, and fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] remains unchanged. In contrast, when 2b is used, substitution of the η2-bound phenylacetylene by 2b occurs on a microsecond time scale, and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)] is the sole product from the reaction. Calculations with density functional theory indicate that this difference in behavior may be correlated with the different affinities of 2a and 2b for the manganese. This study therefore demonstrates that speciation immediately following precatalyst activation is a kinetically controlled event. The most dominant species in the reaction mixture (the solvent) initially binds to the metal. The subsequent substitution of the metal-bound solvent is also kinetically controlled (on a ns time scale) prior to the thermodynamic distribution of products being obtained

    Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause

    Get PDF
    When the supersonic solar wind encounters the Earth's magnetosphere a shock, called bow shock, is formed and the plasma is decelerated and thermalized in the magnetosheath downstream from the shock. Sometimes, however, due to discontinuities in the solar wind, bow shock ripples or ionized dust clouds carried by the solar wind, high speed jets (HSJs) are observed in the magnetosheath. These HSJs have typically a Vx component larger than 200 km s−1 and their dynamic pressure can be a few times the solar wind dynamic pressure. They are typically observed downstream from the quasi-parallel bow shock and have a typical size around one Earth radius (RE) in XGSE. We use a conjunction of Cluster and MMS, crossing simultaneously the magnetopause, to study the characteristics of these HSJs and their impact on the magnetopause. Over 1 h 15 min interval in the magnetosheath, Cluster observed 21 HSJs. During the same period, MMS observed 12 HSJs and entered the magnetosphere several times. A jet was observed simultaneously by both MMS and Cluster and it is very likely that they were two distinct HSJs. This shows that HSJs are not localized into small regions but could span a region larger than 10 RE, especially when the quasi-parallel shock is covering the entire dayside magnetosphere under radial IMF. During this period, two and six magnetopause crossings were observed, respectively, on Cluster and MMS with a significant angle between the observation and the expected normal deduced from models. The angles observed range between from 11° up to 114°. One inbound magnetopause crossing observed by Cluster (magnetopause moving out at 142 km s−1) was observed simultaneous to an outbound magnetopause crossing observed by MMS (magnetopause moving in at −83 km s−1), showing that the magnetopause can have multiple local indentation places, most likely independent from each other. Under the continuous impacts of HSJs, the magnetopause is deformed significantly and can even move in opposite directions at different places. It can therefore not be considered as a smooth surface anymore but more as surface full of local indents. Four dust impacts were observed on MMS, although not at the time when HSJs are observed, showing that dust clouds would have been present during the observations. No dust cloud in the form of Interplanetary Field Enhancements was however observed in the solar wind which may exclude large clouds of dust as a cause of HSJs. Radial IMF and Alfvén Mach number above 10 would fulfill the criteria for the creation of bow shock ripples and the subsequent crossing of HSJs in the magnetosheath.publishedVersio

    Characteristics of Kinematics of a Coronal Mass Ejection during the 2010 August 1 CME-CME Interaction Event

    Get PDF
    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; ~1200 km/s) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; ~700 km/s). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.Comment: accepted for Ap

    A comprehensive understanding of carbon-carbon bond formation by alkyne migratory insertion into manganacycles

    Get PDF
    Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps

    Coumarin C−H Functionalization by Mn(I) Carbonyls : Mechanistic Insight by Ultra-Fast IR Spectroscopic Analysis

    Get PDF
    Mn(I) C−H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4, opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds
    • …
    corecore