45 research outputs found

    Localised states in an extended Swift-Hohenberg equation

    Get PDF
    Recent work on the behaviour of localised states in pattern forming partial differential equations has focused on the traditional model Swift-Hohenberg equation which, as a result of its simplicity, has additional structure --- it is variational in time and conservative in space. In this paper we investigate an extended Swift-Hohenberg equation in which non-variational and non-conservative effects play a key role. Our work concentrates on aspects of this much more complicated problem. Firstly we carry out the normal form analysis of the initial pattern forming instability that leads to small-amplitude localised states. Next we examine the bifurcation structure of the large-amplitude localised states. Finally we investigate the temporal stability of one-peak localised states. Throughout, we compare the localised states in the extended Swift-Hohenberg equation with the analogous solutions to the usual Swift-Hohenberg equation

    The Swift-Hohenberg equation with a nonlocal nonlinearity

    Get PDF
    It is well known that aspects of the formation of localised states in a one-dimensional Swift--Hohenberg equation can be described by Ginzburg--Landau-type envelope equations. This paper extends these multiple scales analyses to cases where an additional nonlinear integral term, in the form of a convolution, is present. The presence of a kernel function introduces a new lengthscale into the problem, and this results in additional complexity in both the derivation of envelope equations and in the bifurcation structure. When the kernel is short-range, weakly nonlinear analysis results in envelope equations of standard type but whose coefficients are modified in complicated ways by the nonlinear nonlocal term. Nevertheless, these computations can be formulated quite generally in terms of properties of the Fourier transform of the kernel function. When the lengthscale associated with the kernel is longer, our method leads naturally to the derivation of two different, novel, envelope equations that describe aspects of the dynamics in these new regimes. The first of these contains additional bifurcations, and unexpected loops in the bifurcation diagram. The second of these captures the stretched-out nature of the homoclinic snaking curves that arises due to the nonlocal term.Comment: 28 pages, 14 figures. To appear in Physica

    Wave-modulated orbits in rate-and-state friction

    Get PDF

    Dynamics near a periodically forced robust heteroclinic cycle

    Get PDF

    Réverbérations d'ondes et frottement

    Get PDF
    Nous proposons qu'une origine possible de glissement saccadé et erratique de couches élastiques cisaillées l'une contre l'autre est associée à la réverbération des ondes qui rayonnent et se réfléchissent aux niveaux des interfaces en frottement solide. Dans le cadre des lois de frottement à variable interne, nous montrons que la dynamique du glissement interfacial est déterminée par un système différentiel avec délai correspondant au temps caractéristique des réverbérations fixé par l'épaisseur des couches. La stabilité du glissement stationnaire et des solutions périodiques est analysée

    The meandering instability of a viscous thread

    Full text link
    A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed UU, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [See S. Chiu-Webster and J. R. Lister, J. Fluid Mech., {\bf 569}, 89 (2006)]. We experimentally studied this "fluid mechanical sewing machine" in a new, more precise apparatus. As UU is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency ω\omega of the meandering close to the bifurcation. For smaller UU, single-frequency meandering bifurcates to a two-frequency "figure eight" state, which contains a significant 2ω2\omega component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller UU. More complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between two oscillatory modes with frequencies ω\omega and 2ω2\omega. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.Comment: 12 pages, 9 figures, revised, resubmitted to Physical Review
    corecore