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Localized States in an Extended Swift–Hohenberg Equation∗


John Burke† and Jonathan H. P. Dawes‡


Abstract.	 Recent work on the behavior of localized states in pattern-forming partial differential equations has 
focused on the traditional model Swift–Hohenberg equation which, as a result of its simplicity, has 
additional structure; it is variational in time and conservative in space. In this paper we investigate 
an extended Swift–Hohenberg equation in which nonvariational and nonconservative effects play a 
key role. Our work concentrates on aspects of this much more complicated problem. First we carry 
out the normal form analysis of the initial pattern-forming instability that leads to small-amplitude 
localized states. Next we examine the bifurcation structure of the large-amplitude localized states. 
Finally, we investigate the temporal stability of one-peak localized states. Throughout, we compare 
the localized states in the extended Swift–Hohenberg equation with the analogous solutions to the 
usual Swift–Hohenberg equation. 
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1. Introduction and background. The study of the spontaneous emergence of patterns 
of activity out of homogeneous states has a long history, motivated by a wealth of exam
ples in fluid and solid mechanics, and more recently extended to nonlinear optics, granular 
media, chemical reactions, and mathematical biology. General surveys are given, from dif
ferent viewpoints, by Cross and Hohenberg [12], Cross and Greenside [11], Hoyle [18], and 
Pismen [25]. 

In many cases the stable patterns that appear are roughly periodic in space and extend 
throughout the bulk of the experimental or computational domain, growing smoothly in am
plitude as a control parameter increases above a critical value. In other cases the system 
displays hysteresis: the pattern appears abruptly at finite amplitude as the system undergoes 
bifurcation, and the pattern persists as the control parameter is then reduced below the bi
furcation point. This latter case is often referred to as the “subcritical” case, in contrast with 
the former, which is the “forward” or “supercritical” case. 

One of the most popular model equations for the examination of the dynamics of pattern-
forming systems of this kind on a domain Ω ⊆ R is the Swift–Hohenberg equation [28] in one  
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spatial dimension with quadratic-cubic nonlinearity, 

(1.1) ∂tu = ru − (1 + ∂xx)
2 u + bu2 − u 3 , 

where u(x, t) is a scalar variable which describes the pattern-forming activity, and r and b 
are real control parameters. Typical analyses [5] fix  b and treat r as the primary bifurcation 
parameter. The trivial state u(x, t) = 0 is linearly stable in r <  0 and undergoes a pattern-
forming instability at r = 0, where the spatial coordinate in (1.1) is scaled so that the initial 
instability is to perturbations with wavenumber k = 1.  In  r >  0 the trivial state is unstable to 
steady, spatially periodic perturbations with a range of wavenumbers surrounding k = 1.  The  
secondary bifurcation parameter b determines the criticality of the pattern-forming instability 
at r = 0: it is supercritical if b2 < 27/38 and subcritical if b2 > 27/38. 

Equation (1.1) has several important symmetries. First, it is equivariant under spatial 
reflections (x, u) → (−x, u). Second, it is equivariant under the following inversion involving 
the parameters: (x, u; r, b) → (x, −u; r, −b). In consequence, the behavior of (1.1) can be fully 
classified by considering only the b ≥ 0 half of the parameter plane. 

We note that a common variant of (1.1) replaces the quadratic-cubic nonlinearities bu2 −u3 

with the cubic-quintic combination cu3 − u5 [7]. This results in a subcritical instability for 
all c >  0 and is appropriate if there is an additional symmetry u → −u of the system, as, 
for example, in the case of Boussinesq thermal convection with identical upper and lower 
boundary conditions [18]. Of course (1.1) also includes this extra symmetry at b = 0,  and  
this is a popular choice to model a supercritical pattern-forming system. In this paper, we 
are interested in the more generic case in which the additional u → −u symmetry is absent. 

The dynamics of (1.1) are strongly influenced by the fact that it is variational; i.e., it can 
be written in the form 

δF [u]
(1.2) ∂tu = − ,

δu 

where the Lyapunov functional F [u] (which we refer to as a free energy) is given by 

(1.3) F [u] =  − 
1 
ru 2 + 

1
((1 + ∂xx)u)

2 − 
1 
bu3 +

1 
u 4 dx 

2 2 3 4Ω 

on the bounded domain Ω with suitable boundary conditions on ∂Ω (for example, Neumann).

It follows that 

∫ 
(1.4) 

d 
dt 
F [u] =  − 

Ω 
(∂tu)

2dx ≤ 0 , 

so that the free energy does not increase in time along trajectories. Straightforward cal
culations show that F [u] is in addition bounded from below. Hence the variational prop
erty guarantees that solutions converge to equilibria: sustained oscillations, traveling waves, 
and temporal chaos cannot arise. The resulting equilibrium profiles u(x) satisfy the time-
independent version of (1.1). An equivalent description of these equilibria is as trajectories in 
x of a fourth-order spatial dynamical system. For example, a stationary, uniform-amplitude 
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pattern of wavenumber k corresponds to a periodic orbit in x with period 2π/k. The  spatial  
dynamical system thus derived is conservative, and the quantity 

1 1 1 1 4(1.5) H = − (r − 1)u 2 + (∂xu)
2 − bu3 + u(∂xxu)

2 + (∂xu)(∂xxxu) − 
2 2 3 4 

is independent of x. Both of these properties (variational in t and conservative in x) aid in 
the analysis of (1.1). 

On spatially extended domains Ω = R, the Swift–Hohenberg equation (1.1) exhibits a 
variety of equilibria beyond the uniform-amplitude patterns mentioned above. In the subcrit
ical regime, this includes stationary, spatially localized states for which the amplitude of the 
pattern decays to u → 0 as  x → ±∞. In the spatial dynamical system, these localized profiles 
correspond to orbits homoclinic in x to the trivial fixed point u = 0. Recent short reviews of 
the generation of localized states in this context are given by Knobloch [21] and  Dawes  [13]. 
The bifurcation analysis of the initial pattern-forming instability at r = 0 (equivalently re
ferred to in the context of fourth-order dynamical systems as a reversible 1:1 resonance or a 
Hamiltonian–Hopf bifurcation) was initiated by Iooss and Perouème [20] and developed by 
later authors, notably Woods and Champneys [29], Coullet, Riera, and Tresser [10], and Burke 
and Knobloch [6]. The normal form analysis shows that in the subcritical regime a family of 
steady, small-amplitude localized states of the form 

√ √ 
(1.6) u(x) ∼ −r sech(x −r/2) cos(x + φ) +  O(r) 

bifurcates from u = 0  into  r <  0, along with the uniform-amplitude patterns. Terms present 
in the Swift–Hohenberg equation that are manifested beyond all algebraic orders in the nor
mal form break the S1 normal form symmetry associated with φ and select φ = 0  and  φ = π 
as the only physical solutions to (1.1); see [8, 22]. The profiles along these two branches are 
even-symmetric under spatial reflection (i.e., they are invariant under the reversibility trans
formation). The branch associated with φ = 0 includes profiles with a local maximum in u at 
the midpoint, and the branch associated with φ = π includes profiles with a local minimum 
in u at the midpoint. We refer to the former branch as L0 and the latter as L1. These two 
branches of even-symmetric localized states persist to finite amplitude where they undergo 
homoclinic snaking—a sequence of saddle-node bifurcations that cause the branches to inter
twine as they oscillate back and forth across a parameter range called the snaking or pinning 
region [5, 29]. The resulting bifurcation structure, shown in Figure 1, also includes a sequence 
of so-called rung branches which emerge from L0 and L1 in pitchfork bifurcations located 
near the saddle-node bifurcations and cross-link the two snaking branches. The profiles that 
make up L0 and L1 resemble several wavelengths of a uniform-amplitude pattern connected to 
the trivial state by a symmetrically related pair of fronts. The profiles on the rung branches 
are similar to those on the snaking branches, but they are not symmetric. These profiles 
spontaneously break the reversibility symmetry of (1.1), so each point on the rung branches 
in Figure 1 actually represents two different profiles with identical norms which are related to 
each other by reflection in x. 

The linear stability of the various stationary profiles is determined by linearizing (1.1) 
about the state. The even-symmetric localized states from L0 and L1 are unstable at onset 
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Figure 1. (a) Bifurcation diagram of stationary solutions to (1.1) at b = 1.8, plotted in terms of the norm 
||u||L2 = (

�
Ω u 2(x)dx)1/2 . Shading indicates the snaking region. The snaking branches L0 and L1 include 

even-symmetric localized states; the arrows indicate that on Ω =  R the snaking continues indefinitely. The rung 
branches which cross-link the snaking branches are also shown. The branch P of spatially periodic patterns 
satisfies H = 0  and includes the Maxwell point M at which F = 0. The norm of solutions on P is rescaled 
so that this branch can be displayed on the same scale as the branches of localized states. Solid/dashed curves 
indicate stable/unstable solutions. (b) Profiles from several saddle-node bifurcations of the snaking branches; 
profiles (i), (iii), and  (v) are from L0, and profiles (ii), (iv), and  (vi) are from L1. 

and change stability at each saddle-node bifurcation; profiles from the segments of the snaking 
branches that slant “up and to the right” on the bifurcation digram in Figure 1 are stable, 
and those that slant “up and to the left” are unstable. All of the asymmetric profiles from 
the rungs are unstable. 

The variational and conservative properties of the Swift–Hohenberg equation help consid-
erably in understanding these localized states and the associated snaking bifurcation struc-
ture [7]. For example, the fact that the spatial dynamics associated with (1.1) is conservative 
determines the wavelength (i.e., the spatial period) of the pattern within the localized states. 
At fixed r, there typically exists an entire family of stationary, spatially periodic patterns 
uP(x; k) parameterized by the wavenumber k. The particular pattern that is selected to ap-
pear within the localized state must lie in the level set H = 0.  Figure  1 includes the branch 
P of spatially periodic states defined by H = 0, and the pattern wavenumber k varies with 
r along this branch to satisfy the H = 0 constraint. Careful measurement of the numeri-
cally computed localized states confirms that this branch of patterns correctly predicts the 
wavenumber variation k(r) within the localized states, at least when the localized states are 
sufficiently wide. The variational property of (1.1) is also useful in understanding the localized 
states. The free energy F of the uniform-amplitude patterns varies along P. The so-called 
Maxwell  point M is the  r value at  which  the pattern  on  P has  the same free energy as  the  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

265 LOCALIZED STATES IN AN EXTENDED SH EQUATION 

trivial state; i.e., it is defined by the two constraints H = F = 0.  Away  from  the  Maxwell  
point, there is a free energy mismatch between the pattern within the localized state and the 
trivial background state, with the pattern energetically favored above the Maxwell point and 
the trivial flat state favored below. This free energy mismatch is countered by the energy as
sociated with the fronts, which pins the fronts to the interior pattern. The stationary localized 
states within the snaking region correspond to critical points of the free energy landscape (lo
cal minima for the stable localized states; local maxima and saddles for the unstable localized 
states from the snaking branches and the rungs). Outside the snaking region the free energy 
mismatch is sufficiently large to eliminate the critical points, depinning the fronts and forcing 
them to drift. The temporal dynamics of localized initial conditions at values of r outside the 
snaking region support this description. The Maxwell point therefore serves as an organizing 
center for the snaking structure and the localized states. 

It is clear that the special properties of the Swift–Hohenberg equation confer additional 
properties which, while extremely useful in understanding the bifurcation structure of localized 
states, may not be valid generically. The generic situation in which Turing instability occurs 
in one dimension is spatially left-right symmetric, and hence the spatial dynamical system is 
reversible, but there is no additional requirement either for the spatial dynamical system to 
be conservative or for the temporal dynamics to be variational. In fact, many systems without 
these properties exhibit localized states which undergo homoclinic snaking, such as the com
plex Ginzburg–Landau equation with either 2:1 or 1:1 resonant forcing [24]. Similar behavior 
is also observed in systems in higher spatial dimensions, such as binary fluid convection in two 
dimensions [3] and plane Couette flow in three dimensions [27]. Akhmediev and Ankiewicz [1] 
and Purwins, Bödeker, and Amiranashvili [26] provide more extensive surveys of localized 
structures in dissipative nonlinear systems. Therefore, it is clearly of substantial interest to 
understand the behavior of localized states in systems where reversibility is preserved but the 
variational/conservative structure is lost. In this paper our specific motivation is from work 
by Kozyreff and Tlidi [23], who argue that in a particular double limit of small subcriticality 
and small critical wavenumber for the pattern-forming instability, an extended version of the 
Swift–Hohenberg equation is necessary to capture the generic pattern-forming behavior: 

(1.7) ∂tu = ru − (1 + ∂xx)
2 u + bu2 − u 3 + α(∂xu)

2 + βu∂xxu .  

This equation is an extension of (1.1) in which, due to the double limit, quadratic nonlinearities 
containing two spatial derivatives can be established to be of the same asymptotic order as 
the other usual terms. Like (1.1), equation (1.7) is reversible; it is also equivariant under 
the following inversion involving the parameters: (x, u; r, b, α, β) → (x, −u; r, −b, −α, −β). 
Equation (1.7) remains variational and spatially conservative for α = β/2, but in the generic 
case α 	= β/2 it loses these properties. On a technical level, we note that (1.7) is a semilinear 
PDE; extending the right-hand side further to include generic nonlinear terms containing four 
spatial derivatives would yield a PDE that was quasilinear but no longer semilinear. 

The dynamics and structure of localized states in (1.7) are formidably complicated. In 
this paper, we provide an initial investigation that focuses on a few key issues. First, in section 
2 we present the normal form analysis of the extended Swift–Hohenberg equation (1.7) near  
the pattern-forming instability. A lengthy multiple-scales calculation allows us to compute 
the normal form coefficients explicitly in terms of the parameters in (1.7), which in turn 
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(a)  r < 0  (b)  r = 0  (c)  0  < r < 1 

Figure 2. Spatial eigenvalues of the trivial state u = 0  of the Swift–Hohenberg equation (1.1), plotted in the 
complex plane. (a) For r < 0 the eigenvalues form two complex conjugate nonreal pairs with real parts of equal 
magnitudes and opposite signs. (b) For r = 0  the eigenvalues are purely imaginary and of multiplicity two. (c) 
For 0 < r < 1 the eigenvalues form two purely imaginary pairs. The same eigenvalue structure applies to the 
normal form of the Hamiltonian–Hopf bifurcation (2.1) in (a) μ < 0, (b) μ = 0, and  (c) μ > 0. 

enables us to establish the different regimes for the dynamics of this equation. Sections 3 
and 4 contain numerical investigations of large-amplitude localized states far from onset. 
In section 3 we show that localized states in the extended Swift–Hohenberg equation (1.7) 
exhibit homoclinic snaking, though the details are not exactly the same as in the usual Swift– 
Hohenberg equation (1.1). In section 4 we examine the existence and stability of one-peak 
localized states. We find that there is both traveling wave (“drift”) instability and standing 
wave instability of the single-peak state, and we discuss how these new bifurcations arise. 
Section 5 concludes. 

2. Normal form coefficients. In this section we use normal form analysis to examine the 
initial pattern-forming instability of the extended Swift–Hohenberg equation (1.7) at  r = 0.  
The time-independent version of this equation forms a fourth-order spatial dynamical system. 
The four spatial eigenvalues of the fixed point associated with the trivial state u = 0  are given  
by {±( 

√ 
r − 1)1/2 ,±(− 

√ 
r − 1)1/2}. In  r < 0 the four spatial eigenvalues form a complex 

quartet, and the origin is hyperbolic. At r = 0 the spatial eigenvalues collide pairwise on 
the imaginary axis, and in 0 < r < 1 they form two imaginary pairs so that the origin 
is a center. Figure 2 shows the behavior in the spatial eigenvalues near r = 0,  which  is  
characteristic of the Hamiltonian–Hopf bifurcation. The dynamics in the normal form of this 
bifurcation are well understood, and the goal of this section is to classify the dynamics of the 
extended Swift–Hohenberg equation (1.7) by deriving the relationship between the coefficients 
in the normal form and the parameters in (1.7). A straightforward but lengthy method to 
determine this relationship is to explicitly transform the spatial dynamical system associated 
with (1.7) into normal form. This involves introducing a four-dimensional coordinate system 
which reproduces the spatial dynamics of (1.7) and then performing an appropriate linear 
transformation followed by a sequence of nonlinear near-identity transformations to match 
the normal form order by order. We choose an alternative method, based on [17] and  later  
expanded in [6], which involves reducing (1.7) to an amplitude equation and comparing this to 
a suitable scaled reduction of the normal form. The values of the normal form coefficients in 
terms of the parameters from (1.7) can be read off by comparing the two reduced equations. 

We begin in section 2.1 with a summary of the normal form for the Hamiltonian–Hopf 
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bifurcation, paying particular attention to heteroclinic and homoclinic orbits because these 
correspond to fronts and localized states in (1.7). In section 2.2 we describe the scalings that 
reduce the normal form (2.1) to a Ginzburg–Landau equation. In section 2.3 we describe a 
similar reduction  for (1.7) and use this to derive the relationship between the normal form 
coefficients and the parameters in (1.7). In section 2.4 we describe geometrical features of this 
relationship. 

2.1. The Hamiltonian–Hopf normal form. The normal form for the Hamiltonian–Hopf 
bifurcation is [20, 29] 

(2.1a) A′ = iA + B + iAP (μ; y, w) , 

(2.1b) B′ = iB + iBP (μ; y, w) +  AQ(μ; y, w) , 

where A(x) and  B(x) are complex variables, y ≡ |A|2 and w ≡ i B − ¯(A ¯ AB), the overbar refers 2 
to complex conjugation, and prime denotes differentiation with respect to x in the context 
of our spatial dynamical system. The parameter μ is an unfolding parameter analogous to 
r in (1.7). The normal form is equivariant with respect to the reversibility transformation 

¯(x, A, B) → (−x, A, −B̄). The terms P (μ; y, w) and  Q(μ; y, w) are polynomials with real 
coefficients. We consider only the first few terms in P and Q, linear in μ and up  to quadratic  
order in y and w, 

(2.2a) P (μ; y, w) =  p1μ + p2y + p3w + p4y 2 + p5wy + p6w 2 , 

(2.2b) Q(μ; y, w) =  −q1μ + q2y + q3w + q4y 2 + q5wy + q6w 2 . 

Without loss of generality we can choose the sign of μ to ensure q1 > 0. With this choice, 
the fixed point A = B = 0 is hyperbolic in μ <  0 and  a center  in  μ >  0, so the bifurcation is 
oriented so that the spatial eigenvalues follow those shown in Figure 2. The nonlinear behavior 
of the unfolding near μ = 0 depends crucially on two of the normal form coefficients, q2 and 
q4. The sign of q2 determines the criticality of the bifurcation of small-amplitude periodic 
orbits at μ = 0; this bifurcation is supercritical for q2 > 0 and  subcritical for  q2 < 0. The 
role of q4 is more subtle, as discussed below. We remark that if q2 is O(1), then the role of q4 

is formally irrelevant to describing the dynamics near μ = 0. However, the calculation that 
follows is performed in the neighborhood of the codimension-two point (μ, q2) =  (0, 0), and so 
the sign of q4 becomes highly relevant. 

Space does not permit a complete discussion and analysis of the normal form dynamics. 
We present a very brief summary that is sufficient to highlight the differences in terms of 
possible orbits homoclinic to zero. We refer the interested reader to the analysis contained in 
[14, 19, 20, 29] for further details. 

The analysis of the dynamics of the normal form is made considerably easier by the 
existence of two conserved quantities: w (defined above) and h ≡ |B|2 − y 

Q(μ; s, w)ds.0 
Within the level set w = h = 0, which includes the fixed point A = B = 0, the dynamics 
reduce to a second-order nonlinear oscillator which can be conveniently written in the form 

( )2dy
(2.3) + f (y) = 0  ,

dx 
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Figure 3. Schematic summary of the regimes of normal form dynamics in the (μ, q2) plane, in the cases 
(a) q4 > 0 and (b) q4 < 0, after Figures 2 and 3 of [29]. Orbits homoclinic to the origin exist in the shaded 
regions. The dashed curves indicate Δ = 0, where  the quantity  Δ ≡ q 2 

2 /4 + 4q1q4μ/3 is the discriminant of 
f(y)/y2. The  solid  line  in  (a) labeled μM indicates the Maxwell point. 

where 

(2.4) f (y) =  4q1μy
2 − 2q2y 3 − 

4 
3
q4y 4 , 

and by definition only y ≥ 0 contains physically relevant solution trajectories. 
Figure 3 indicates the shape of the potential function f (y) for the different sign combina-

tions of μ, q2, and  q4. In  the  case  q4 > 0, Figure 3(a) shows that orbits homoclinic to the origin 
exist only in q2 < 0 and  only  for  μM ≤ μ ≤ 0, where μM is defined by the condition that the 
discriminant of f (y)/y2 vanishes. At μM the potential f (y) has a doubly degenerate zero at a 
nontrivial value of y corresponding to a periodic orbit within the w = h = 0 level set; there is 
also a heteroclinic orbit (i.e., a spatial front) connecting the origin to this periodic state. The 
codimension-one point μM is analogous to the Maxwell point in (1.1). While homoclinic orbits 
are certainly found throughout the shaded region in Figure 3(a), the multiplicity of localized 
states associated with homoclinic snaking is associated with the heteroclinic orbits along μM. 

Turning to the case q4 < 0, illustrated in Figure 3(b), we see that homoclinic orbits exist 
throughout μ <  0 for  q2 of either sign. The homoclinic orbits for q2 < 0 are born at small 
amplitude as μ decreases through zero, whereas the homoclinic orbits that exist near μ = 0  
when q2 > 0 exist at finite amplitude. Moreover, exactly at μ = 0 these homoclinic orbits 
have algebraically decaying tails since at μ = 0 the origin is nonhyperbolic. In addition, Dias 
and Iooss [14] have shown that, for q4 < 0 and in the regime where μ >  0 and  q2 > 0, there 
exist orbits that are homoclinic to the periodic solutions. 

2.2. Scaling the normal form. We wish to reduce the normal form (2.1) to an amplitude 
equation valid near the bifurcation at μ = 0. The calculations that follow are simplified by 
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focusing on the regime of mild criticality; hence we restrict ourselves to the behavior near the 
codimension-two point (μ, q2) = (0, 0). 

We begin by introducing a small parameter ε � 1 and rescaling the parameters as μ = 
ε4μ̂ and q2 = ε2q̂2. Next, we define the large spatial scale X = ε2x and write (A, B) =  
(εÃ(X), ε3B̃(X))eix . Dropping the tildes, the polynomials P and Q in (2.2) become 

(2.5a)	 P = ε2 p2|A|2 + O(ε4) , 

Q = −ε4 μ + ε4 ˆ + ε4 i 
(A ¯ ¯(2.5b)	 q1 ̂ q2|A|2 q3 B − AB) +  ε4 q4|A|4 + O(ε6) ,

2

and so the normal form (2.1) becomes 

(2.6a) ε3A′ = ε3B + iεA 
[ 
ε2 p2|A|2

] 
+ O(ε5) , 

(2.6b) ε5B′ = iε3B 
[ 
ε2 p2|A|2

] 
¯+ εA −ε4 q1μ̂+ ε4 q̂2|A|2 + ε4 q3 

i ( 
AB̄ − AB 

) 
+ ε4 q4|A|4 + O(ε7) . 

2 

Rearranging (2.6a) enables us to write B in terms of A: 

(2.7)	 B = A′ − ip2A|A|2 + O(ε2) . 

After differentiating with respect to X, this  gives  

(2.8)	 B′ = A′′ − ip2 
( 
2A′|A|2 + A2Ā′) 

+ O(ε2) . 

Note that (2.6b) gives an alternate (and independent) asymptotic expression for B′ , 

B′	 i ¯= ip2B|A|2 − q1μAˆ + q̂2A|A|2 + q3 A(AB̄ − AB) +  q4A|A|4 + O(ε2)
2 

|A|2 − q1 ̂ q2A|A|2(2.9) = ip2 
( 
A′ − ip2A|A|2

) 
μA + ˆ

+ q3 
i
A2(Ā′ + ip2Ā|A|2) − q3 

i |A|2(A′ − ip2A|A|2) +  q4A|A|4 + O(ε2) ,
2	 2 

after eliminating factors of B using (2.7). Equating (2.8) and  (2.9) leads to a time-independent 
Ginzburg–Landau-type equation for A(X): 

(2.10) A′′ = −q1 ̂ q2A|A|2 p2 +
1 

A2 ¯ + i 
1 
q3μA + ˆ + i q3 A′ 3p2 − A′|A|2 

2 2
+ (q4 − q3p2 + p2

2)A|A|4 + O(ε2) . 

This equation is an approximation of the normal form (2.1) valid in the neighborhood of the 
codimension-two point (μ, q2) = (0, 0). 

2.3. Scaling of the Swift–Hohenberg equation, and matching. We now return to the 
extended Swift–Hohenberg equation (1.7) and introduce a scaling that leads to an analogous 
version of (2.10) valid near the pattern-forming instability at r = 0. Again, we focus on a 
neighborhood of the codimension-two point where the pattern-forming bifurcation changes 
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criticality. We anticipate that the condition of mild criticality will demand that a particular 
combination of the quadratic coefficients (b, α, β) is small, and we allow this combination to 
emerge naturally in the calculation. 

The reduction procedure for (1.7) involves taking appropriate scalings for the parameters 
and expanding u(x, t) as a sum of Fourier modes multiplied by amplitudes that depend on 
long spatial and temporal scales. We introduce a small parameter ε � 1 and rescale the 
parameters as 

(2.11) r = ε4 ̂ b = b0 + ε2ˆ α = α0 + ε2 ̂ β β ,μ , b ,  α ,  = β0 + ε2 ˆ

where b0, α0, β0 are the values (to be determined) of the quadratic coefficients that correspond 
to q2 = 0,  and  ̂μ, b̂, α̂, β̂ are all O(1). Next, we define the large spatial scale X = ε2x and 
long time scale T = ε4t and propose the following ansatz for solutions to (1.7): 

(2.12) u(x, t) =  ε2Θ+  
[ 
εAeix + ε2Be2ix + ε3Ce3ix + ε4De4ix + c.c. 

] 
+ O 

( 
ε4
) 
, 

where the amplitudes Θ, A, B, C, D are functions of X and T and are all O(1), the higher 
order terms in ε take the form εnenix +c.c. for n ≥ 5, and “c.c.” denotes complex conjugation 
of the terms preceding it within the brackets. Note that the usual approach is to proceed 
order by order in ε, bringing in appropriate modes at each order to avoid secular terms. We 
choose instead to include in (2.12) all the Fourier modes necessary, with scalings motivated 
in obvious ways from the number of quadratic interactions necessary to produce a term with 
the appropriate Fourier dependence. We proceed by substituting (2.11) and  (2.12) into  (1.7) 
and collecting terms with the same Fourier dependence enix, keeping careful track throughout 
this procedure of the size of the largest neglected terms. The results for n = 0, 1, 2, 3 are  

(2.13a) 

n = 0 :  0 =  −ε2Θ+  b0 
( 
2ε2|A|2 + ε4Θ2 + 2ε4|B|2) 

− 3 
( 
2ε4Θ|A|2 + ε4Ā2B + ε4A2B̄

) 

+ α0 
( 
2ε2|A|2 + 8ε4|B|2 + 2ε2(iε2A∂X Ā− iε2(∂X A)Ā) 

) 

+ β0 
( − 2ε2|A|2 − 8ε4|B|2 + 2ε2(iε2(∂X A)Ā− iε2A∂X Ā) 

) 

+ 2ε4b̂|A|2 + 2ε4α̂|A|2 − 2ε4β̂|A|2 + O(ε6), 

(2.13b) 
n = 1 :  ε5∂T A = ε5 ˆ

( 
2ε3ΘA + 2ε3 ¯ BC 

) 
μA + ε5∂XX  A + b0 AB + 2ε5 ¯

− 3 
( 
ε3A|A|2 + ε5Θ2A + ε5Ā2C + 2ε5Θ ¯

) 
AB + 2ε5A|B|2

+ α0 
( 

AB + 12ε5 ¯ A)B − 2iε5 ¯
) 

4ε3 ¯ BC + 2iε5(∂X Θ)A + 4iε5(∂X ¯ A∂X B 

+ β0 
( − ε3ΘA − 5ε3 ¯ BCAB − 13ε5 ¯

+ 2iε5Θ∂X A + 4iε5A∂¯ X B − 2iε5(∂X Ā)B 
) 

+ 2ε5b̂ 
( 
ΘA + ¯

) 
+ 4ε5 ̂ AB − ε5 ˆ

( 
ΘA + 5 ¯

) 
+ O(ε7),AB α ¯ β AB 

(2.13c) 
n = 2 :  0 =  −9ε2B + 24iε4∂X B + b0 

( 
AC 

) 
ε2A2 + 2ε4ΘB + 2ε4 ¯
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− 3 
( 
ε4ΘA2 + 2ε4|A|2B 

) 

+ α0 
( − ε2A2 + 6ε4 ¯

) 
AC + 2iε4A∂X A 

+ β0 
( − ε2A2 − 4ε4ΘB − 10ε4 ¯

) 
AC + 2iε4A∂X A 

+ ε4b̂A2 − ε4 ̂ βA2αA2 − 2ε4 ˆ + O(ε6), 

(2.13d) 
n = 3 :  0 =  −64ε3C + b0 

( 
2ε3AB 

) − 
( 
ε3A3

) − α0 
( 
4ε3AB 

) − β0 
( 
5ε3AB 

) 
+ O(ε5) . 

The n = 1  terms  in (2.13b) are the equivalent of the “solvability conditions” found using other 
methods, and these are clearly the terms in which we are ultimately interested. However, we 
need first to solve (2.13a), (2.13c), and (2.13d) to express the amplitudes Θ, B, and  C in 
terms of the principal amplitude A. We do this iteratively by writing 

(2.14) Θ = Θ0 + ε2Θ2 + O(ε4) , B  = B0 + ε2B2 + O(ε4) , C  = C0 + O(ε2) 

and substituting these into (2.13a), (2.13c), and (2.13d). The leading order relations are 

(2.15) Θ0 = c1|A|2 , B0 = c2A
2 , C0 = c3A

3 , 

where we define the parameter combinations 

(2.16a) c1 = 2 (b0 + α0 − β0) , 
1 

(2.16b) c2 = (b0 − α0 − β0) ,
9 
1 [ ] 

(2.16c) c3 = (2b0 − 4α0 − 5β0) c2 − 1 . 
64 

At next order, (2.13a) and  (2.13c) give  

(2.17a) Θ2 = ĉ1|A|2 + c4|A|4 + ic5 
( 
A∂X Ā− (∂X A)Ā

) 
, 

(2.17b) B2 = ĉ2A
2 + c6A

2|A|2 + ic7A∂X A ,  

where we define the further parameter combinations 

(2.18a) ĉ1 = 2  b + ˆ β = 
∂c1 ̂ ∂c1 

ˆ
∂c1 ˆˆ α − ˆ b + α + β ,

∂b0 ∂α0 ∂β0 

1 ˆ α − ˆ
∂c2 ̂ ∂c2 ∂c2 ˆ(2.18b) ĉ2 = b − ˆ β = b + α̂+ β ,

9 ∂b0 ∂α0 ∂β0 

(2.18c) c4 = b0(c1
2 + 2c2

2) − 6(c1 + c2) + 8c2
2(α0 − β0) , 

(2.18d) c5 = 2(α0 − β0) , 
1 

(2.18e) c6 = [2c1c2(b0 − 2β0) + 2c3(b + 3α0 − 5β0) − 3(c1 + 2c2)] ,
9

2


(2.18f) c7 = [24c2 + (α0 + β0)] ,
9 

and we use the “hat” notation in (2.17) to indicate that ĉ1 and ĉ2 can be interpreted as higher 
order contributions to coefficients of terms that already appeared at leading order in (2.15). 
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We now turn to consideration of (2.13b). As it stands, this equation contains both O(ε3) 
and O(ε5) terms. The problem of mixed asymptotic orders disappears if we demand that the 
O(ε3) terms vanish, and this defines the desired relation between the quadratic coefficients 
of (1.7) at the codimension-two point. Inserting (2.14) and  (2.15) into (2.13b), we see that 
the O(ε3) terms  are  

¯0 =  b0 
( 
2Θ0A + 2 ¯

) − 3A|A|2 + 4α0AB0 − β0 
( 
Θ0A + 5 ¯

) 
,AB0 AB0 

(2.19) = [3  − c1 (2b0 − β0) − c2 (2b0 + 4α0 − 5β0)] A|A|2 . 

The bracketed quantity determines the criticality of the bifurcation at r = 0. Based on the 
preceding discussion of the normal form, we set 

1 1 
(2.20) q2(b, α, β) =  3 − 2 (b + α − β) (2b − β) − (b − α − β) (2b + 4α − 5β) ,

4 9 

so that at the codimension-two point we have q2(b0, α0, β0) = 0  and  the  O(ε3) terms  in  (2.13b) 
vanish. The remaining terms in (2.13b) are  O(ε5), and, after substituting and tidying up, these 
give a differential equation for the principal amplitude A(X, T ): 

(2.21) ∂T A = μ̂A + 4∂XX  A − 4q̂2A|A|2 + ic8|A|2∂X A + ic9A
2∂X Ā+ c10A|A|4 , 

where ( ) ∣ 
(2.22a) q̂2 = 

∂q2 

∂b 
b̂ + 

∂q2 

∂α 
α̂ + 

∂q2 

∂β 
β̂ 

∣ ∣ ∣ , 
(b,α,β)=(b0 ,α0,β0) 

(2.22b) c8 = b0(−2c5 + 2c7) +  α0(4c7 + 2c1 − 4c2) +  β0(c5 − 5c7 + 2c1 + 8c2) , 

(2.22c) c9 = b0(2c5) +  α0(2c1 + 4c2) +  β0(−c5 − 2c2) , 

c10 = b0(2c4 + 2c6 + 2c2c3) − 3(c1
2 + c3 + 2c1c2 + 2c2

2) 

(2.22d) + α0(4c6 + 12c2c3) +  β0(−c4 − 5c6 − 13c2c3) . 

Equation (2.21) is the Ginzburg–Landau approximation to the extended Swift–Hohenberg 
equation (1.7) valid near onset in the regimes of small criticality, i.e., near the codimension
two point (r, q2(b, α, β)) = (0, 0). 

Both (2.10) and the time-independent version of (2.21) describe the spatial evolution of 
the amplitude A, so we can compare these two equations term by term in order to identify 
the normal form coefficients in terms of the parameters of (1.7). This procedure gives the 
following: 

(2.23a) q1 = 1/4 , 
1 

(2.23b) p2 = − (c8 + c9) ,
16 

1 
(2.23c) q3 = (c8 − 3c9) ,

8 
1 ( 

2 2
) 1 

(2.23d) q4 = − 3c8 + 2c8c9 + 5c9 − c10 . 
256 4 
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For our purposes, it is sufficient to calculate only these normal form coefficients. The remaining 
normal form coefficients, as well as those associated with higher order terms that were omitted 
from (2.2), may be obtained by carrying out these expansions to higher order in ε. 

In the limit α = β = 0, the above expressions reduce to the familiar normal form results 
for the usual Swift–Hohenberg equation (1.1). In this limit, (2.20) becomes q2(b1, 0, 0) = 
(27 − 38b2)/36. The condition q2 = 0  gives  b2 = 27/38, and at this value of b (2.23d) gives  
q4|q2=0 = 2202/361. 

2.4. Geometry of the parameter dependence of q2 and q4. In this section we briefly 
describe some geometrical features of the dependence of the normal form coefficients q2 and 
q4 on the parameters b, α, and  β. 

Expression (2.20) for  q2 is a homogeneous quadratic function of b1, α, and  β apart from a 
constant term. After some simplification (2.20) can be written in terms of a quadratic form 
as 

1 ( ) 
(2.24)	 q2 (b, α, β) =  27 − p T Mp ,

36 

where p = [b α β]T denotes the vector of coefficients of the quadratic terms in (1.7) and  ⎡	 ⎤ 
38 19 −61/2 ⎣	 ⎦(2.25)	 M = 19 −4 −17/2 

−61/2 −17/2  23  

is a 3 × 3 symmetric matrix with eigenvalues λ1 � 66.82, λ2 � 0.5113, λ3 � −10.33. The 
condition q2 = 0  gives  

(2.26)	 27 = p T Mp , 

which can be interpreted as an equation for a two-dimensional surface in the R3 parameter 
space of the quadratic coefficients (b, α, β). The signs of the eigenvalues of M indicate that 
this surface is a “hyperboloid of 1-sheet.” Figure 4 shows two  views of the  surface  (2.26). The 
normal form coefficient q2 is positive inside the hyperboloid (i.e., in the connected component 
of R3 that contains the origin) and negative outside. The parameter inversion symmetry 
of (1.7) is apparent in the reflection symmetry of the surface. 

The quantity q4 is important only when q2 is small, so it is natural to consider the sign 
of q4 on the surface q2 = 0.  In  Figure  4 the regions in which q4, as  given  by  (2.23d), is 
positive or negative are colored red and blue, respectively. The figure also includes a dot 
at (b, α, β) =  (1.8, 0, 0) to indicate the location of the usual Swift–Hohenberg equation (1.1) 
whose behavior is shown in Figure 1. This is confirmation of the result mentioned above that 
q4|q2=0 > 0 in (1.1). Moreover, it is clear from Figure 4 that there are substantial regions of 
parameter space in which q4 < 0, and so there is ample motivation to study the dynamics in 
both cases of the sign of q4. 

Recall that the extended Swift–Hohenberg equation (1.7) is variational in t and conser
vative in x when α = β/2. This corresponds to a planar section of the three-dimensional 
parameter space defined above. Figure 5(a) shows the corresponding section of the q2 = 0  
surface from Figure 4 using coordinates (α, b). Figure 5(b) shows a second planar section of 
the q2 = 0 surface from Figure 4, at  β = 0. The behavior of (1.7) at  β = 0 is considered in 
more detail in the following section. 

http:��10.33
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(a)  (b)  

α 

β 

b 

α 

β 

b 

Figure 4. Two views of the surface q2 = 0  plotted in the R3 parameter space of the quadratic coefficients 
(b, α, β), with contours showing level sets of q4. The surface is colored according to the value of q4: Red  
and blue, respectively, correspond to positive and negative values of q4. The open circle (◦) marks the point 
(b, α, β) = (1.8, 0, 0). The surface can be viewed in the accompanying movie 84397 01.mpg [local/web 5.98MB]. 

3. Homoclinic snaking in the extended Swift–Hohenberg equation. In this section we 
examine the behavior of localized states in the extended Swift–Hohenberg equation (1.7). The 
primary goal is simply to establish (numerically) that the homoclinic snaking behavior present 
in (1.1) persists with the inclusion of the nonvariational and nonconservative terms. We also 
point out several ways in which the localized states in (1.7) differ from those in (1.1). For 
simplicity, we fix b = 1.8 throughout this section and use the behavior of (1.1) at this value of 
b (as shown in Figure 1) as a point of reference. We make use of (2.20) to focus on values of 
the quadratic parameters (b, α, β) for  which  q2 < 0 and  |q2| is O(1)—i.e., the highly subcritical 
regime, where homoclinic snaking is prominent—and we use the software package AUTO [15] 
to trace branches of localized states in the primary bifurcation parameter r. 

To begin, we examine the effect of the new terms in (1.7) by increasing  α from α = 0  
while leaving β = 0 fixed. Frames (a) and (b) of Figure 6 show the bifurcation diagrams 
of localized states at α = 0.1 and  α = 0.5, respectively. The behavior of stationary, even-
symmetric localized states is qualitatively the same as that shown in Figure 1 at α = 0.  These  
localized states are organized in a pair of intertwined snaking branches, which we continue to 
label L0 and L1. The saddle-node bifurcations on the snaking branches line up asymptotically 
(except perhaps the lowest two on the L0 branch) to two r values which define the snaking 
region. The shaded region in each frame indicates the snaking region at α = 0,  so  increasing  
α increases the width of the snaking region and also shifts it to more negative values of r. 
Note, however, that in the case of (1.7) we cannot define a Maxwell point within this snaking 
region. Moreover, unlike in Figure 1, we do not indicate the stability of any localized states 
in Figure 6. A complete description of the stability of these states is beyond the scope of 

84397_01.mpg
http://link.aip.org/mm/SJADAY/110843976/84397_01.mpg
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αα = β/2 

bb 

(b)  (a)  
−20 0 20 

−2 

−1 

0 

1 

2 

q2 > 0 

q2 < 0 

q2 < 0 

−2 0 2 

−2 

−1 

0 

1 

2 

q2 > 0 

q2 < 0 

Figure 5. Two planar sections of the q2 = 0  surface in Figure 4: (a) α = β/2, where  (1.7) is variational 
in t and conservative in x, and  (b) β = 0, which is the focus of sections 3 and 4. The coloring of the q2 = 0  
curve indicates the sign of q4, with  q4 > 0 red and q4 < 0 blue. Solid dots (•) mark the points with q4 = 0. The  
dashed line in each frame indicates b = 1.8,  and  the open circle (◦) marks the point (b, α, β) =  (1.8, 0, 0). The  
inset in (a) shows a small q4 > 0 range along the curve. 

r r 

r r 

c c 

|| u||L2 || u||L2 

(a)  (b)  

(c)  (d)  

−0.4 −0.2 

0 

4 

L1  

L0  

−0.4 −0.2 

−5e−4 

0 

5e−4 

−0.4 −0.2 

0 

4 

L1  

L0  

−0.4 −0.2 

−5e−3 

0 

5e−3 

Figure 6. Bifurcation diagrams of localized states at (a) α = 0.1 and (b) α = 0.5, with other parameters 
fixed at b = 1.8 and β = 0. The two snaking branches L0 and L1 contain even-symmetric, steady, spatially 
localized profiles. The profiles on the rung branches are asymmetric and drift in x at constant velocities ±c. 
Temporal stability of solutions is not indicated. The shading indicates the snaking region at α = 0  (see Figure 1). 
The lower frames show the drift velocity of the asymmetric localized states from the lowest six rung branches. 
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this paper, but we do present a limited discussion of stability in section 4, where  we  focus  on  
one-peak solutions between the first and second saddle-node bifurcations on the L0 branch. 

At the fixed values of b and β used in Figure 6, (2.20) for  q2 has a zero at α � −1.306, 
with q2 < 0 for values of α larger than this; see Figure 5(b). From (2.23d) we find that q4 > 0 
at this point. The normal form therefore predicts that the behavior in the neighborhood of 
the codimension-two point (r, α) = (0, −1.306) follows Figure 3(a), just like the familiar case 
of (1.1) in the neighborhood of (r, b) =  (0, 27/38). For values of α slightly greater than 
α � −1.306, the snaking region is exponentially narrow and close to r = 0. At larger α, the  
quantity q2 decreases to an O(1) negative value, and the system becomes more subcritical. 
This causes the width of the snaking region to increase and shift to more negative r values. 
This is consistent with the snaking behavior shown at the various α values in Figure 6. 

We note that, at the fixed values b1 = 1.8 and  β = 0  used  in  Figure  6, (2.20) for  q2 also has a 
second zero at α � 18.4; see Figure 5(b). The pattern-forming instability at r = 0  is  subcritical  
in α ∈ [−1.306, 18.4]. Moreover, at this second codimension-two point (r, α) � (0, 18.4) we 
again have q4 > 0 and so the normal form analysis suggests that nearby the behavior of the 
system is similar to that shown in Figure 3(a). Understanding the behavior of (1.7) in  the  
neighborhood of this second codimension-two point, and its influence on, and relationship to, 
the localized states associated with the first codimension-two point at (r, α) � (0, −1.306), 
remains an open problem.  

The bifurcation diagrams in frames (a) and (b) of Figure 6 also include the rung branches 
which cross-link the two snaking branches. The asymmetric localized states on the rungs drift 
in x since this is generic in nonvariational systems. The rung branches shown in Figure 6 
consist of profiles of fixed shape that drift at constant velocity; i.e., they are traveling wave 
solutions of the form u(x, t) =  u(x − ct). The drift velocity c for the various rungs is plotted 
in frames (c) and (d) of Figure 6. The drift velocity varies with r along each rung but 
approaches c = 0 at the endpoints that mark the secondary pitchfork bifurcations where the 
rungs connect to the snaking branches. Recall that each point on a rung actually includes 
two different profiles related by reflection symmetry. These profiles drift with equal speed in 
opposite directions, so Figure 6(c) includes two segments (one in c >  0 and  one in  c <  0) 
for each rung in Figure 6(a), and likewise for Figures 6(d) and 6(b). There are two trends in 
c that are apparent in Figure 6. First,  at  fixed  α the drift velocity varies from one rung to 
the next: the narrow localized states on the lower rungs tend to travel faster than the wider 
localized states on the upper rungs. Second, by comparing frames (c) and (d) it appears that 
the drift speed tends to increase with α, at least for small α. Intuitively this is to be expected 
as one moves away from the variational case α = 0. Similar trends have been observed in drift 
speeds of asymmetric localized profiles in other systems [16]. 

The new terms in (1.7) also cause a qualitative change in the wavenumber selection relative 
to that found in (1.1). Figure 7 shows the measured wavenumber k of the pattern within the 
localized states as a function of r for one complete back-and-forth cycle across the pinning 
region, for several (α, β) pairs at fixed b = 1.8. In each case, the measurement involves wide 
profiles from far up the snaking branches, where the wavenumber is well defined. Though 
the measurements are made using one particular back-and-forth pair of segments from one 
particular snaking branch, they are characteristic of all the wide localized states far up both 
the L0 and L1 snaking branches. For the narrow localized states lower on the snaking branches, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCALIZED STATES IN AN EXTENDED SH EQUATION 277 

r 

k 

−0.4 −0.3 −0.2 

0.94 

0.96 

0.98 

1.0 (i )  
(i i )  

(i i i )  
(iv)  

Figure 7. Wavenumber k of the pattern within the localized states, measured along the snaking branches for 
several values of the quadratic coefficients: (i) (b, α, β) =  (1.8, 0, 0), as  in  Figure  1; (ii) (b, α, β) =  (1.8, 0.1, 0), 
as in Figure 6(a); (iii) (b, α, β) =  (1.8, 0.5, 0), as  in  Figure  6(b); and  (iv) (b, α, β) =  (1.8, 0.1, 0.2). For  the  
parameter values in (i) and (iv), the system is conservative in x because α = β/2, and the wavenumber selection 
k(r) is a single-valued function of r. For the parameter values in (ii) and (iv), the system is nonconservative 
in x, and the wavenumber selection k(r) is multivalued, tracing out an isola. The wavenumbers shown in the 
figure apply only to the wide localized states taken from far up the respective snaking branches. 

the wavenumber is poorly defined. 

The curve labeled (i) in Figure 7 shows the wavenumber variation of the localized states 
along the snaking branches from Figure 1, at  α = β = 0. Recall that in this case the spatial 
dynamics is conservative so the patterns within the localized states must satisfy H = 0.  
This constraint H = 0 defines the branch P of patterns included in Figure 1 and determines 
the variation in wavenumber k along this branch. Thus k(r) for the patterns is defined 
uniquely over a range of r which includes the snaking region of localized states; the measured 
wavenumber on the curve (i) in Figure 7 is the segment of this broader k(r) curve that lies 
within the snaking region. In particular, we note that the wavenumber variation of the stable 
localized states along the segments of the snaking branches that slant “up and to the right” is 
identical to the wavenumber variation of the unstable localized states along the segments that 
slant “up and to the left.” Two profiles at the same r value on consecutive segments include 
identical patterns in their interior and differ only in the shape of the fronts that connect the 
pattern to the flat background. Two distinct fronts are created in a saddle-node bifurcation 
at the left edge of the pinning region and merge in a second saddle-node bifurcation at the 
right edge [4]. The H = 0 constraint forces the fronts to approach the same spatially periodic 
orbit. 

In the absence of a spatially conserved quantity H, the saddle-node bifurcation of fronts 
creates a pair of fronts that approach two different periodic orbits. The wavenumber variation 
along the segments of the snaking branches that slant “up and to the right” is therefore gener-
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ically different from that along the segments that slant “up and to the left,” though of course 
they match at the saddle-node bifurcations at the edge of the snaking region. The curves 
(ii) and (iii) in Figure 7 show the wavenumber measured along the snaking branches from 
frames (a) and (b) of Figure 6. In these examples, the spatial dynamics is nonconservative 
in x, and the wavenumber along the snaking branches traces a loop. The larger wavenumber 
corresponds to segments of the snaking branches that slant “up and to the right,” and the 
lower wavenumber to segments that slant “up and to the left,” at least for these two examples. 
We note that the splitting of k(r) into a loop has also been observed in other spatially non-
conservative systems, such as the forced complex Ginzburg–Landau equation [24] and plane 
Couette flow [16]. 

The curve labeled (iv) in Figure 7 shows the wavenumber variation at α = 0.1 and  β = 
0.2. As α = β/2, this corresponds to a spatially conservative limit of (1.7). As such, the 
wavenumber variation is again a single-valued function of r. The splitting of the wavenumber 
selected by the localized states is therefore a measure of how spatially nonconservative the 
system is, though the high-precision numerical measurements required to observe the splitting 
may make this impractical as a diagnostic tool. 

4. One-peak solutions. In this section we investigate another aspect of how the nonva
riational and nonconservative terms affect the behavior of (1.7). We focus on the stability 
of one-peak localized states since this enables us to show clearly the emergence of two new 
kinds of temporal instabilities: drift and standing oscillations. These instabilities may lead to 
time-dependent localized states, such as the “bouncing localized structures” reported in a non
linear optical system in [9]. In the context of the extended Swift–Hohenberg equation (1.7), 
the stationary one-peak localized states occur on the segment of the L0 branch between the 
first and second saddle-node bifurcations. It is convenient to introduce the notation L01pk to 
refer to this segment. We organize the results by fixing b = 1.8 and  β = 0 and examining the 
states on L01pk at increasing values of α. 

Throughout this section, we report on the linear stability of the one-peak states. As 
usual, the linear stability of a stationary solution u0(x) to  (1.7) is determined by substituting 
u(x, t) =  u0(x) +  εU(x)eσt into (1.7) and ignoring O(ε2) terms. The mode U(x) and  growth  
rate σ satisfy the linear eigenvalue equation σU = L[u0, ∂x]U , where the linearized operator 
associated with the right-hand side of (1.7) is  

(4.1) L[u0, ∂x] =  r − (1 + ∂xx)
2 + 2bu0 − 3u 20 + 2α(∂xu0)∂x + β ((∂xxu0) +  u0∂xx) . 

Spatial translation invariance of (1.7) implies that any steady solution always has a neutrally 
stable (σ = 0) Goldstone mode UG(x) =  ∂xu0(x). The one-peak solutions of interest here are 
even-symmetric, and the associated Goldstone mode is odd-symmetric. In what follows, we 
report the existence of unstable (Re σ >  0) modes using the notation [mr,mc, nr, nc], where 
mr (mc) is the number of even-symmetric modes with real (complex) eigenvalues σ, and  nr 

(nc) is the number of odd-symmetric modes with real (complex) eigenvalues. Stable solutions 
are labeled [0, 0, 0, 0]. Note that both mc and nc must be even; in what follows, we never 
observe unstable odd-symmetric modes with complex eigenvalues, so nc = 0 throughout. 

A natural starting point is the case α = 0, as the behavior of the usual Swift–Hohenberg 
equation (1.1) is well known. As shown in Figure 1, the one-peak localized states on L01pk 
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(b)  
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[ 1 , 0 , 0 , 0]  

L01pk  

[ 1 , 0 , 1 , 0]  

[ 1 , 0 , 0 , 0]  

Figure 8. Bifurcation diagram of one-peak states for (b, α, β) = (1.8, 0.5, 0). (a) Snaking diagram of 
localized states, with no indication of stability. (b) Detail of the L01pk segment; solid (dashed) curves indicate 
stable (unstable) states. The number and symmetry of unstable modes is also indicated, using the notation 
defined in the text. (c) Detail of the right edge of L01pk. Solid dots (•) indicate saddle-node bifurcations; the 
open circle (◦) indicates the secondary bifurcation to the rung branch. One-peak solutions are stable over the 
entire L01pk segment. 
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Figure 9. One-peak profiles and eigenfunctions from Figure 8 at (b, α, β) = (1.8, 0.5, 0), (a) near the left 
edge of L01pk and (b) near the right edge of L01pk. Each column includes the stationary one-peak state u(x), the  
neutrally stable Goldstone mode UG(x), and the even-symmetric amplitude mode Ua(x) that changes stability 
at the corresponding saddle-node bifurcation. The right column also includes the odd-symmetric phase mode 
Up(x) which is associated with the lowest rung branch. 

are all stable. Increasing α initially maintains qualitatively very similar behavior. Figure 8 
shows the behavior at α = 0.5. Figure 8(a) shows the usual snaking behavior of L0 and L1. 
Figure 8(b) shows a detail of the L01pk segment and includes stability assignments. Below 
the saddle-node bifurcation at the left edge of L01pk, a single even-symmetric “amplitude” 
mode becomes unstable. Likewise, at the saddle-node bifurcation at the right edge of L01pk 

an even-symmetric amplitude mode becomes unstable. This is followed by an odd-symmetric 
“phase” mode which becomes unstable slightly above this saddle-node bifurcation, at the 
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Figure 10. Bifurcation diagram of one-peak states for (b, α, β) =  (1.8, 1.6, 0). Notation follows Figure 8. 
Stationary one-peak solutions are stable from the left edge of L01pk up to r � −0.2358, where the odd-symmetric 
mode associated with the rung loses stability. 
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Figure 11. One-peak profiles and eigenfunctions from Figure 10 at (b, α, β) = (1.8, 1.6, 0), (a) near the left 
edge of L01pk and (b) near the right edge of L01pk. Notation follows Figure 9. 

secondary bifurcation that gives rise to the lowest rung branch. Figure 9 shows the profiles 
u(x) at two points along L01pk, one near the left edge and one near the right edge. This figure 
also includes plots of the modes that are most important in determining stability. We note in 
passing that, unlike in the case of the usual Swift–Hohenberg equation (1.1), the amplitude 
mode which passes through zero growth rate at the left edge of L01pk is different than the 
one that passes through zero growth rate at the right edge. The former merges with another 
even-symmetric mode along the way and becomes complex with Re σ < 0, corresponding to 
a stable oscillatory mode. 

Qualitatively new behavior occurs at α = 1.6, as shown in Figures 10 and 11. The  
bifurcation behavior in the neighborhood of the left edge of L01pk remains unchanged; below 
this saddle-node bifurcation there is a single unstable amplitude mode which stabilizes at the 
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[ 0 , 2 , 0 , 0]  
[ 0 , 2 , 1 , 0]  

Figure 12. Bifurcation diagram of one-peak states for (b, α, β) =  (1.8, 2.0, 0). Notation follows Figure 8. 
Stationary one-peak solutions are stable from the left edge of L01pk up to r � −0.2682, where an even-symmetric 
oscillatory mode loses stability; the oscillatory instability is marked with a diamond symbol (�). 

saddle-node bifurcation. However, the profiles on L01pk are not stable all the way up to the 
saddle-node bifurcation at the right edge. Instead, a phase mode loses stability slightly before 
the right edge. This is the same instability as that previously associated with the secondary 
bifurcation to a rung branch, so now the rung connects to the L0 branch slightly below the 
right saddle-node bifurcation. Though not labeled in the figure, we find that the profiles on 
the rung branch remain unstable. 

Increasing α causes the secondary bifurcation to the rung branch to move further from 
the right edge of L01pk but also leads to new instability. The bifurcation diagram at α = 2.0 
is  shown in Figure  12. At this value of α, the first mode to become unstable along L01pk is 
an even-symmetric oscillatory mode, which loses stability at r � −0.2682. The relevant mode 
Uosc(x) is therefore complex, and its real and imaginary parts are shown in Figure 13(a). This 
mode eventually restabilizes much further along L0, above the saddle-node bifurcation at the 
right edge of L01pk. We find that the imaginary part of the complex eigenvalue at onset is 
Im σ � 0.55 and that it remains nearly constant along the snaking branch. 

The stationary localized solutions on L01pk at r values above the complex instability are 
unstable but may evolve to time-dependent states which remain spatially localized. Such 
solutions are often referred to as oscillons. Figure 13(b) shows the space-time plot of one 
such solution at r = −0.2681, slightly above the initial instability on L01pk at r � −0.2682. 
The criticality of this instability is, however, difficult to confirm. Numerical results indicate 
that the oscillons that occur above onset are large perturbations of the unstable stationary 
solutions on L01pk. Furthermore, the oscillons persist as r decreases below r � −0.2682. 
One explanation for this might be that the oscillatory instability is subcritical and that the 
branch of oscillons that emerges from this point turns around and stabilizes in a saddle-
node bifurcation. A second possibility is that the branch that emerges from L01pk remains 
unstable, and the localized solution shown in Figure 13(b) lies on a separate branch of localized 
oscillations that emerges elsewhere in the bifurcation diagram. This second possibility occurs 
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Figure 13. (a) One-peak profile and eigenfunctions from Figure 12 at (b, α, β) =  (1.8, 2.0, 0), at  a  value of  
r slightly above the oscillatory instability on L01pk. Notation follows Figure 9. The eigenfunction Uosc(x) of 
the mode associated with the oscillatory instability is also included; solid and dashed lines indicate the real and 
imaginary parts of Uosc(x), respectively. (b) Space-time plot of an oscillon at (b, α, β) = (1.8, 2.0, 0), shown on 
the domain (x, t) ∈ [−50, 50] × [0, 100]. The  r value for this solution is r = −0.2681, which is slightly above the 
oscillatory instability of the one-peak solutions from Figure 12. The oscillon can be viewed in the accompanying 
movie 84397 02.mpg [local/web 472KB]. 

in the autonomous system of reaction-diffusion equations studied in [2], which includes a 
bifurcation structure very similar to that shown in Figure 12. An analysis of the bifurcation 
structure of oscillons in (1.7), including numerical continuation of the solution in Figure 13(b), 
is the focus of ongoing research. 

Further increase in α causes the oscillatory instability to invade more of the stable range of 
the L01pk segment. At α � 2.8 this instability reaches the left edge of L01pk so all stationary 
one-peak solutions are unstable. 

5. Conclusions. In this paper we have considered the effect of nonvariational and non-
conservative terms on the well-known quadratic-cubic Swift–Hohenberg equation. Such an 
investigation is well motivated in general by the wealth of recent work on homoclinic snaking 
in a variety of contexts where no variational principle exists, and in particular by the paper 
of Kozyreff and Tlidi [23], who show that (1.7) arises naturally as a model equation for a 
long-wavelength pattern-forming instability in one-dimensional dissipative systems. 

The dynamics of the extended Swift–Hohenberg equation (1.7) are extremely rich, and we 
have been content to set the scene for future work by focusing on a few aspects of the problem. 
First we carried out the computation of the normal form coefficients for the pattern-forming 
bifurcation problem. This is a key first step in the analysis of this extended equation. It 
allows us to use the normal form results as a guide to the kinds of localized states that should 
exist in different parameter regimes. One important result is the existence of substantial open 
regions of parameter space in which q4 < 0. 

Next we investigated numerically the effect of one of the new terms on the snaking be-
havior at large amplitude, far from the initial linear instability. We found that the snaking 

84397_02.mpg
http://link.aip.org/mm/SJADAY/110843976/84397_02.mpg


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

283 LOCALIZED STATES IN AN EXTENDED SH EQUATION 

phenomenon persists, and we pointed out aspects of snaking in the extended Swift–Hohenberg 
equation (1.7) that differ from the well-known snaking in (1.1), including wavenumber selection 
within the localized states, and the behavior of the solutions from the rungs. 

Finally, we investigated the emergence of two new kinds of instability of stationary one-
peak localized states that affect the parameter range over which stable one-peak states exist. 
These are (i) a drift instability and (ii) an oscillatory instability. The latter may lead to stable 
localized oscillations, but the bifurcation structure of such solutions remains unclear. We 
showed how the two new instabilities arise as qualitative changes to the traditional snaking 
bifurcation diagram. Since both instabilities are generic, we expect that this analysis will 
provide a guide to the location and dynamics of instabilities of multipeak localized states and 
quite possibly multipulse localized states as well. The details of these cases, as so much else, 
we leave for future work. 

Acknowledgments. We are grateful to Björn Sandstede, Do Young Yoon, and Daniele 
Avitabile for useful discussion about the behavior of oscillons in this and other models. 
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