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Abstract 

A frictional spring–block system has been widely used historically as a model to display some of 
the features of two slabs in sliding frictional contact. Putelat, Dawes and Willis (2008) demon
strated that equations governing the sliding of two slabs could be approximated by spring–block 
equations, and studied relaxation oscillations for two slabs driven by uniform relative motion 
at their outer surfaces, employing this approximation. The present work revisits this problem. 
The equations of motion are first formulated exactly, with full allowance for wave reflections. 
Since the sliding is restricted to be independent of position on the interface, this leads to a set of 
differential-difference equations in the time domain. Formal but systematic asymptotic expan
sions reduce the equations to differential equations. Truncation of the differential system at the 
lowest non-trivial order reproduces a classical spring-block system, but with a slightly different 
“equivalent mass” than was obtained in the earlier work. Retention of the next term gives a new 
system, of higher order, that contains also some explicit effects of wave reflections. The smooth 
periodic orbits that result from the spring–block system in the regime of instability of steady 
sliding are “decorated” by an oscillation whose period is related to the travel time of the waves 
across the slabs. The approximating differential system reproduces this effect with reasonable ac
curacy when the mean sliding velocity is not too far from the critical velocity for the steady state. 
The differential system also displays a period-doubling bifurcation as the mean sliding velocity 
is increased, corresponding to similar behaviour of the exact differential-difference system. 
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1. Introduction 

Frictional spring–block systems have been studied for decades in search of a better under
standing of friction. For practical and engineering interests, they also constitute good mechanical 
analogues of experimental apparatus, machines and tools. Moreover, they are useful “toy model” 
nonlinear systems for studying the dynamics of frictional stick-slip oscillations (Burridge and 
Knopoff, 1967, Rice and Tse, 1986) which represent a possible mechanism responsible for the 
recurrence of earthquakes (Brace and Byerlee, 1966). One could, however, argue legitimately 
that a spring–block system cannot “correspond closely to an actual fault” (Rice and Tse, 1986) 
whose behaviour depends on continuum mechanics fields. 

In this paper, we present a method for reducing the dynamics of a frictional elastic continuum 
to the dynamics of a sliding block pulled with a generalized Kelvin–Voigt model (a spring and 
a dashpot in parallel) when elastic radiation and boundary reflection are accounted for. This 
particular aspect concerns only the modelling of the stress waves and is independent of the model 
of friction that is employed to complete the formulation. We thus propose a systematic method 
for deriving sliding–block mechanical analogues of frictional elastic continua that are useful for 
the investigation of the nonlinear dynamics of sliding friction and the states of erratic sliding of 
frictional systems and may provide new insight into the episodic recurrence of earthquakes and 
aftershocks. 

Earthquakes are recurrent and aperiodic, while basic stick-slip oscillations are periodic. Ex
perimentally, irregular slip patterns have been observed at very low driving velocities for which 
elastic radiation is commonly disregarded (Ruina, 1983, Gu et al., 1984, Gu and Wong, 1994). 
We will show that taking into account elastic radiation allows the appearance of complex slip 
dynamics even for low driving velocities. 

Fully developed stick-slip oscillations are relaxation oscillations that comprise a long quasi-
stationary phase1 during which the stress builds up linearly in time followed by a sudden and 
short harmonic slip phase accompanied by a stress drop releasing the elastic energy stored dur
ing the first phase (Rice and Tse, 1986, Putelat et al., 2008). Although Coulomb’s model of 
friction captures the essence of stick-slip oscillations from the difference in values between the 
static and dynamic coefficients of friction (Bowden and Tabor, 1954), it cannot account for the 
existence of a velocity-dependent critical value of the stiffness for the appearance of stick-slip 
and the increase of stick-slip amplitude for decreasing stiffness or velocity induced by slip mem
ory effects (Rabinowicz, 1957). These experimental observations were reproduced theoretically, 
as we recall below, only from the concept of rate-and-state friction proposed by Ruina (1983) 
and Rice and Ruina (1983) following Dieterich (1979). 

Rate-and-state friction is a general framework for the quantitative description of friction laws 
in which the frictional shear stress τ is determined by relations of the type 

τ = F(v, φ; σ) and φ̇ = −G(v, φ; σ), (1) 

where v and σ denote the interfacial slip rate and normal stress while φ represents an internal 
variable characterising the state of resistance to sliding of the interface. The evolution law (1)2 

models the memory effects typical of the response of frictional interfaces to sudden velocity 

1In this paper we define the “quasi-stationary phase” as the part of a periodic orbit on which the acceleration is 
negligible, reserving “quasi-static” for a part of an orbit, or a system, in which elastic wave propagation is disregarded. 
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changes. The instantaneous frictional response described by the law (1) implies the steady-state 
friction law 

τ = Fss(V; σ), (2) 

obtained for slipping at constant rate v = V and constant interfacial state φ = φss(V; σ) given 
implicitly by solving G(V, φss; σ) = 0. Accounts of the phenomenological description and geo
physical applications of such laws can be found in the review articles of Marone (1998) and 
Scholz (1998), while the present state of our physical understanding of such laws and their mi
crophysical foundations are reviewed and discussed in Baumberger and Caroli (2006) and Putelat 
et al. (2011). 

Phenomenologically, the concept of rate-and-state friction assumes that a reference value of 
the friction coefficient associated with a reference slip rate V∗ is modified by correction terms that 
depend on the velocity and the interfacial state. It is supposed that the interfacial state relaxes 
to a steady state after sliding over a length characterised by a memory length L. A common 
realisation of such friction laws is the Dieterich ageing law defined by 

τ = a + a ln(v/V ) + b ln(φ/φ )
� 

σ with φ̇ = 1 − vφ/L, (3) ∗ ∗ ∗

where φ∗ = L/V∗ is the steady-state reference value of the interfacial state. Typical values for 
the material parameters are given in Table 1. From a microphysical point of view the memory 
length is usually thought to correspond to the slip distance required for the rejuvenation of the 
population of interacting microasperities which constitute the interface topography (Dieterich, 
1979, Dieterich and Kilgore, 1994, Baumberger and Caroli, 2006). Besides, in the thermody
namic theory for slip events based on the Eyring transition-state theory of rate processes (Heslot 
et al., 1994, Rice et al., 2001, Putelat et al., 2011), we note that the reference slip rate V∗ can be 
identified as the product of a reference frequency of slip events and a characteristic length corre
sponding to the average separation between the energy barriers to overcome in relation to some 
thermal activation mechanism. We finally note that the analytical form of the state evolution law 
is empirical and is still open to discussion (see e.g. Putelat et al., 2011). We will use the law (3) 
to illustrate numerically the analyses reported in this paper. 

Within this rate-and-state framework, consider a block of mass M pulled with a constant 
speed V by a spring of stiffness k. When friction is velocity-weakening, stick-slip motion arises 
from a Hopf bifurcation located at a critical value kc of the stiffness given by 

kc = −GφF
′ + Mω2 

c , (4) ss 

where 
ω2 

c = −G2 F′ /Fv, (5) φ ss

denotes the critical frequency of oscillations (Rice and Ruina, 1983, Gu et al., 1984, Heslot et al., 
1994, Putelat et al., 2010). The critical stiffness and frequency depend only on the velocity-
dependent frictional properties of the interface, conveyed by the slope F′ (V) < 0 of the steadyss
state friction law and the partial derivatives Fv ≡ ∂F/∂v and Gφ ≡ ∂G/∂φ > 0 evaluated at the 
steady state (V, φss). We note that the inertia of the block promotes positive deviations from the 
quasi-static value k = −GφF′ of the critical stiffness at high frequency. ∗ ss 

In Putelat et al. (2008), a first step towards connecting the dynamics of a slipping interface to 
the dynamics of a spring–block system was performed in the context of the problem illustrated 
in Fig. 1. Two horizontally infinite identical elastic slabs of thickness h/2 are driven in opposite 
directions with a uniform speed V/2 and slide against each other along a flat frictional interface 
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at z = 0 subjected to a normal stress σ. The density, the shear wave speed and the shear modulus 
of the slabs are denoted ρ, cs and G = ρc2 

s respectively. Assuming the interfacial slip to be 
uniform, the displacement in the two layers is horizontal and denoted u(z, t), where z is the 
vertical coordinate. Assuming symmetry, it suffices to consider a velocity field in the upper 
layer of the form 

u̇(z, t) = V/2 + f (t − (z − h/2)/cs) − f (t + (z − h/2)/cs) , (6) 

which accounts for shear waves radiating away from the interface and reflecting back from the 
top boundary. Equation (6) implies that the interfacial slip rate v(t) = u̇(0+ , t) − u̇(0−, t) and the 
rate of interfacial shear stress τ̇(t) (from the time derivative of Hooke’s law σ̇xz = Gu̇z) are given 
by 

v = V + 2
� 

f (t + h/(2cs)) − f (t − h/(2cs))
� 

,


τ̇ = −ρcs [ f ′(t + h/(2cs)) + f ′(t − h/(2cs))]. 
(7)


The complete system upon which the analysis of this paper is based comprises (7) together 
with the interfacial friction law (1), or equivalently after differentiating (1), 

τ̇ = Fvv̇ −GFφ, and φ̇ = −G,	 (8) 

where the functions Fv, Fφ and G are evaluated at (v, φ, σ). 
The analysis in this paper extends the analysis of Putelat et al. (2008) which proposed that 

(7) could be approximated by 

τ̇ = (G/h) (V − v) − (ρh/12) ̈v,	 (9) 

by Taylor expanding the function f in the limit in which t ≫ h/cs. Equation (9) together with 
(1) describes the dynamics of a spring–block system of mass M = ρh/12 and stiffness k = G/h. 

The contents of the paper are as follows. We revisit and improve on the analysis of Putelat 
et al. (2008) in section 2 where we describe a consistent procedure for reducing (7) to a sys
tem of ordinary differential equations (ODEs). The exact formulation (7) defines a differential-
difference system of equations which is studied in section 3 within the framework of rate-and
state friction (1). In both cases, the linear stability of the steady-state sliding is presented together 
with leading order approximations of the quasi-stationary phase. Section 4 reports the results of 
some explicit computations using the Dieterich law (3). The stable periodic orbits that arise after 
a Hopf bifurcation from the steady-state solution for the exact system of differential-difference 
equations are reproduced with reasonable accuracy by the system of ODEs. Further results are 
then obtained for the ODE system, illustrating the complex dynamics facilitated by wave rever
berations. Such results would be less easy to access for the exact system. Section 5 presents a 
few remarks in conclusion. 

2.	 A spring–block mechanical analogue 

2.1.	 Derivation 
We assume that the interfacial slip rate varies very little during the time h/cs with a view to 

Taylor expanding the functions f (t ± h/(2cs)) and f ′(t ± h/(2cs)). Up to third order in h/cs, this 
leads to the system 

2(h/cs) f ′(t) + (h/cs)3 f ′′′(t)/12 = v − V, 
2 f ′(t) + (h/cs)2 f ′′′(t)/4 = τ/(ρcs). 

(10) 
−˙
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Further derivatives of f could be retained but keeping only those shown has the virtue that f ′(t) 
and f ′′′(t) can be expressed solely in terms of v(t) and τ(t).We remark that all such levels of 
approximation are singular perturbations in the sense that it is high-order derivatives that are 
lost. This in turn implies that we do not necessarily recover the dynamics of the delay-differential 
system from our asymptotic approximation in the limit h/cs 0. Solving (10) and demanding →
for consistency that the double derivative of f ′(t) must equal f ′′′(t) gives the “equation of motion” 
of the interface 

τ̇ = (G/h) (V − v) − (ρh/8) ̈v − (h/cs)2 ... τ /24. (11) 

We recognize that (11) takes the form of the equation of motion for a block of mass M = ρh/8 
pulled at constant velocity V with a spring of stiffness k = G/h connected in parallel with a 
generalized ‘dashpot’ representing the radiative force 

Fr = ¨ (12) (h/cs)
2 τ/24. 

We use the analogy of a dashpot as we expect the friction force τ to depend on the slip velocity. ... 
We note that this radiative force generalises the radiative term crad x derived by Johansen and 
Sornette (1999). 

We make contact with the work of Putelat et al. (2008) by noting that combining the double 
time derivatives of equations (10) in order to eliminate f ′′′(t) provides us with the expression 

... �

τ = −ρcs (cs/h)v̈ + (h/cs)
2 f (5)(t)/6

� 

, 

which introduced into (11) gives 

τ̇ = (G/h) (V − v) − (ρh/12) ̈v − ρcs (h/cs)4 f (5)(t)/144. (13) 

We thus see that the approximation f ′′′(t) ≈ (cs/h)v̈/2 proposed by Putelat et al. (2008), which 
neglects the term of order (h/cs)3 in the double time derivative of (10)1, takes into account only 
the v̈ contribution of the radiative force. We will show later in the paper that the higher order 
term in f (5) in equation (13) is responsible in particular for fast oscillations during the slow 
quasi-stationary phase. 

Choosing characteristic scales of length L, time L/V∗ and stress σ, we write the interfacial 
stress in the form τ = µσ, where µ is the coefficient of friction2. It is convenient, however, not to 
introduce further notation to replace V and v but to regard them instead to be measured in units 
of V∗. Equation (11) can then be expressed in the dimensionless form 

r µ̇ = ǫ (V − v) − ǫr2 v̈/8 − r3 ... µ/24, (14) 

where 
ǫ = ρcsV∗/σ and r = (h/cs)/(L/V∗), (15) 

(recall G = ρc2 
s ). This parametrisation reflects the fact that the normal stress σ and the system’s 

thickness h are the two independent parameters that can be easily experimentally varied in addi
tion to the driving velocity V , while the other quantities ρ, cs and L, V∗ represent respectively the 
material properties of the slabs and the interface and are supposed constant. 

2As defined, µ depends in general on the normal stress σ. 
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We interpret ǫ as the ratio of the slab impedance ρcs to the frictional impedance σ/V∗ which 
measures the relative resistance of the wave propagation to the slip resistance of the interface. 
The second parameter corresponds to the ratio of the time h/cs for the information carried by the 
elastic waves to be sent back to the interface after the boundary reflection to the characteristic 
time scale L/V of the interfacial state relaxation. It is necessary that r ≪ 1 for the validity of the ∗ 

truncated Taylor expansions upon which the approximate equation (11) is based. We note that 
the dimensionless stiffness of the system 

κ = kL/σ = ǫ/r 

is not independent of ǫ and r and would not be a suitable choice of parameter if we were to vary 
the system’s thickness h.3 

As an aside, we remark that the corresponding dimensionless form of the Dieterich ageing 
law (3) is 

µ = a + a ln(v) + b ln(φ),

φ̇ = 1 

∗

− vφ. 
(16)


Equation (14) with the friction law (8) constitute the system of differential equations which 
approximate the sliding dynamics of the interface when r ≪ 1. 

The system (14,8) can be expressed as a system of first-order differential equations. Writing 
µ̇ = χ and δ = y − µ, where ẏ = (ǫ/r)(V − v), the system is of fourth order and can be written in 
the form 

 

 r ˙ = ǫ (V − v) − r χ, 
	
δ 

 

 

	 ˙ 

	 φ = −G(v, φ), 


�	 (17) 


	 v̇ = χ + Fφ(v, φ)G(v, φ)
� 

/Fv(v, φ), 
 

 

 

 r χ̇ = 24 δ/r − 3ǫ v̇. 

The new variable δ(t) denotes the difference between the spring force y and the friction force µ. 
We note that equation (17)4 corresponds to a time integration of (14) with initial condition δ(0) = 
y(0) − µ(0) = ǫ r v̇(0)/8 + r2 µ̈(0)/24, in order to ensure that, in steady state, friction balances the 
elastic spring force so that µss(V) = y. 

We observe that the usual quasi-static limit in which wave propagation is disregarded corre
sponds to the limit r 0 which implies that y = µ from (17)4, and hence µ̇ = ẏ, reducing (17) → 
to 

µ̇ = (ǫ/r) (V − v), 
φ̇ = −G(v, φ), 

where the interfacial slip rate v(µ, φ) is obtained directly by solving (1)1 for v. 

2.2.	 Linear stability of steady-state sliding 

The possible growth rates s of infinitesimal perturbations of the steady-state solution of (17), 

(δ, φ, v, χ) = (0, φss, V, 0), 

are given by the eigenvalues s of the 4 4 Jacobian matrix of (17) which are the roots of the ×
quartic 

rs 
�

1 + (rs)2/24
��

Fvs +GφF
′ � + ǫ 

�

1 + (rs)2/8
�� 

s +Gφ 
� 

= 0, (18) ss 

3Using dimensionless ratios κ and r, equation (14) would read µ̇ = κ (V − v) − (κ r2/8) v̈ − (r2/24) 
... 
µ .
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where the derivatives F′ (φss, V). ss, Fv, Gφ are evaluated at (φ, v) = 
Steady-state motion becomes unstable as r increases, when a root of (18) first acquires a 

positive real part; the corresponding critical value r̃c of r is that for which a root has zero real part. 
The simplest possibility, that s = 0, can never happen since ǫGφ > 0. It is appropriate, therefore, 
to investigate the possibility of a Hopf bifurcation, for which a pair of complex conjugate roots 
become pure imaginary, say s = ±iωc. Substituting these values into the quartic equation (18) 
and taking real and imaginary parts gives 

−rFv 1 − (
�

rωc)2/24
� 

ωc 
2 + ǫGφ 

�

1 − (rωc)2/8
� 

= 0 
(19) 

rGφF′ 1 − (rωc)2/24
� 

+ ǫ 1 − (rωc)2/8
� 

= 0ss 

when the parameter is critical r = r̃c. Their combination gives the frequency at criticality 

ω2 
c = −G2 

φFss
′ /Fv, (20) 

which, when inserted in (19)2, yields the polynomial 

r̃c 
3 − 3r r̃c 

2 − (24/ωc
2) r̃c + (24/ωc

2) r = 0, (21) ∗ ∗ 

determining the critical value of the parameter r, where we have defined 

r = −ǫ/(GφF′ ), (22) ∗ ss

the quasi-static value of the critical r. The cubic equation (21) can be solved explicitly; there are 
several equivalent forms available in which to present the roots. Employing the notation 

p = r3 , q = r2 + 8/ω2 
c, (23) ∗ ∗ 

the roots are 

r + i 
√

3(r1 − r2)/2 − (r1 + r2)/2, r∗ − i 
√

3(r1 − r2)/2 − (r1 + r2)/2, r + r1 + r2, (24) ∗ ∗ 

where 
r1 = [p + i(q3 − p)1/2]1/3 , r2 = [p − i(q3 − p)1/2]1/3 . (25) 

Thus, the roots are real, and are written in ascending order in (24). The smallest root has to be 
negative while the other two are positive. The relevant root is therefore the intermediate one, 

r̃c = r∗ − i 
√

3(r1 − r2)/2 − (r1 + r2)/2, (26) 

since this is encountered first as r increases from zero. It is interesting to rewrite r̃c as 

r̃c = r + 2r sin(θ/3 − π/6)/ cos1/3(θ) (27) ∗ ∗ 

with θ = tan−1( 
√
α) where we define α = (1 + 8/(r ωc)2)3 − 1 > 0. We note that the quasi-static ∗

limit is then obtained for θ → π/2 which corresponds to the condition r∗ωc → 0. 
Finally we can conclude that the steady-state sliding is stable when r < r̃c, the four roots of 

the quartic equation having negative real parts. At r = r̃c the two least stable complex conjugate 
roots cross the imaginary axis. The dash-dotted line in Figure 2 represents r̃c as defined by (27) 
for the Dieterich law, and using the parameter values for paper given in Table 1. 
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A complementary way of looking for the critical r is to find the stability boundary in the 
parameter plane (r, ǫ) defined by (21) and (22), i.e. 

ǫ̃c = −GφF
′ r

r2 − 24/ωc 
2 

. (28) ss 3(r2 − 8/ω2)c 

The term −GφF′ r would be the value ǫ to reach criticality under the quasi-static limit. It corss 

responds to the asymptote of ǫ̃c as r → 0. ǫ̃c is not defined for 
√

8/ωc < r < 
√

24/ωc. The 
boundary ǫ̃c for r > 

√
24/ωc corresponds to a second pair of complex conjugate roots crossing 

the imaginary axis. The stability boundary (28) for the Dieterich law is shown by the dash-dotted 
line in Figure 3. 

3. Differential-difference formulation 

3.1. Formulation 
The exact differential-difference formulation of the single interface problem is given by the 

combination of the wave and interface dynamics (7) and rate-and-state friction (1). We begin by 
time-shifting the undetermined function f by defining g(t) = f (t + h/(2cs)) so that system (7) 
reads 

v(t) = V + 2
�

� 

g(t) − g(t − h/cs)
� 

, 
(29) 

τ̇ = −ρcs g′(t) + g′(t − h/cs)
� 

. 

We also suppose that a curve of initial data γ(t) is specified: 

g(t) = γ(t) for − h/cs � t � 0. (30) 

We will denote g(0) and γ(0) the limits from the right and from the left of the functions g and γ 
respectively. In the general theory of differential-difference equations (Bellman and Cook, 1953) 
it is possible to introduce initial jumps g(0) � γ(0). 

Then the time integration of (29)2 combined with the rate-and-state equation (1) gives the 
algebraic-differential-difference system 

τss(V) − ρcs[g(t) + g(t − h/cs)] = F
�

V + 2[g(t) − g(t − h/cs)], φ 
� 

, 
� (31) 

φ̇ = −G
�

V + 2[g(t) − g(t − h/cs)], φ , 

which determines the dynamics of the interface. Importantly, we have assumed that the initial 
conditions involved in the time integration of (29)2 satisfy 

τ(0) + ρcs 
� 

g(0) + γ(−h/cs)
� 

+ ρcs [g(0) − γ(0)] = τss(V), (32) 

in order to allow the possibility of a steady-state solution for (31) associated with no elastic 
radiation, i.e. g(t) ≡ 0. 

As a result, formulation (31) suggests that the unknown wave function g(t) combines with its 
retarded value g(t − h/cs) to define the perturbations of stress and velocity 

δτ(t) := −ρcs[g(t) + g(t − h/cs)] and δv(t) := 2[g(t) − g(t − h/cs)] 

of the steady sliding state of the interface. Given the initial perturbations δτ0 ≡ δτ(0) = 
−ρcs[g(0) + γ(−h/cs)] and δv0 ≡ δv(t) = 2[g(0) − γ(−h/cs)], we can write the initial condi
tions required for the forward time integration of (31) as 

g(0) = −δτ0/(2ρcs) + δv0/4, (33) 
9 
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with the initial value of the interfacial state φ(0) obtained from the inversion of the friction law 

F
�

V + δv0, φ(0)
� 

= τss(V) + δτ0.	 (34) 

Finally, we nondimensionalise using the same characteristic scales as in section 2: length L, 
time L/V∗ and stress σ. The dimensionless form of (31) is 

τss(V) − ǫ [g(t) + g(t − r)] = F
�

V + 2[g(t) − g(t − r)], φ 
� 

, 

φ̇ = −G
�

V + 2[g(t) − g(t − r)], φ 
� 

, 
(35) 

where ǫ = ρcsV∗/σ and r = (h/cs)/(L/V∗) are defined exactly as in (15). The natural interpreta
tion is that ǫ measures the magnitude of the stress perturbation while r is the single (and constant) 
dimensionless delay time for this differential-difference system. 

3.2.	 Linear stability of steady-state sliding 

We consider a small perturbation of the steady-state solution (g, φ) = (0, φss(V)) of (35) such 
that g = ĝ and φ = φss + φ̂. The stability of the steady-state sliding of the interface is governed 
by the equations (linearised in ĝ and φ̂): 

−ǫ [ĝ(t) + ĝ(t − r)] = 2Fv [ĝ(t) − ĝ(t − r)] + Fφ φ, ˆ

φ̂̇ = −2Gv [ĝ(t) − ĝ(t − r)] −Gφ φ, ˆ (36) 

where the partial derivatives of F and G with respect to v and φ, denoted Fv, Fφ, Gv and Gφ, are 
evaluated at (v, φ) = (V, φss). 

A non-trivial solution of (36) with time-dependence est is possible if the growth rate s satisfies 
the transcendental characteristic equation 

Q(s, r) = A(s) +C(s) e−s r = 0	 (37) 

where A(s) = (Fv + ǫ/2)s + Gφ(F′ + ǫ/2) and C(s) = −(Fv − ǫ/2)s − Gφ(Fss 
′ − ǫ/2). Since the ss 

polynomials A(s) and C(s) are of the same degree, the differential-difference system is termed 
‘neutral’ (Bellman and Cook, 1953). This means that the current rate of change of the function 
g, which in turn determines the rate of change of the interfacial stress, depends on the past rate 
of change of g in addition to the past and current values of g (see equation (29)). We note that 
the quartic equation (18) cannot be recovered from the series expansion of (37) for r 0 since →
this is a singular limit as far as the asymptotic expansion in section 2 is concerned. 

Study of solutions to (37) shows that in the quasi-static limit r 0 steady-state sliding is →
stable. As the delay r increases, a pair of complex conjugate roots s = sr ± iω crosses the 
imaginary axis from the left half plane to the right half plane with the frequency 

ω2 = −G2 F′ /Fv,	 (38) c φ ss

when the delay r reaches the critical value 

tan−1(r ωc/2) 
rc = 

∗
,	 (39) 

ωc/2 

where we recall that r = −ǫ/(GφF′ ). The critical frequency ωc depends only on the friction 
law; given this fact it is not surprising that the same value was obtained from the approximate 

∗ ss
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ODE formulation. However, the critical value of r is different. The solid line in Figure 2 shows 
rc given by (39), together with its approximation r̃c given by (27), shown dash-dotted, for the 
Dieterich law. As mentioned previously, in this and all succeeding figures, the parameter values 
were chosen as those shown for paper in Table 1. The approximation r̃c follows the exact stability 
boundary very closely. The right-hand plot in Figure 2 shows that the relative error is very small 
for V < 103V∗ but grows to the order of 10% as V approaches 106V∗. 

The quasi-static approximation rc = r∗ ≡ −ǫ/(GφF′ ) is recovered in the limit r ωc → 0. As ss ∗

for the spring–block analogue and the boundary (28), expression (39) gives the stability boundary 
in the parameter plane (ǫ, r) 

tan(r ωc/2) 
ǫc = −GφF

′ . (40) ss ωc/2 

As a result, steady-state slidings are unstable when the delay r > rc or alternatively if ǫ < 
ǫc. Figure 3 compares the approximate and exact stability boundaries in the (r, ǫ) plane for the 
Dieterich law. 

Interestingly, in the quasi-static limit r∗ωc → 0, the series expansion of (39) leads to 

κc = ǫ/rc = κ + ǫr ω
2/12 +∗ ∗ c · · · 

where κ∗ ≡ ǫ/r = −GφF′ is the quasi-static dimensionless stiffness. We recognize the classical ∗ ss 
critical stiffness of a spring–block system (4) whose dimensionless mass m = ǫr∗/12 corresponds 
to the approximation studied in Putelat et al. (2008) based on equation (9). 

4. An illustrative example 

In this section we present numerical results using the Dieterich ageing law (3). For the ODE 
system, the results are obtained with the continuation package AUTO (Doedel et al., 1991); 
for the time integration of differential-difference equations they are obtained using the package 
RADAR5 V2.1 (Guglielmi and Hairer, 2001, 2005). Adopting the Dieterich ageing law, the 
ODE system comprises (14) together with (16). It was found convenient for the computations to 
express the first-order system (17,16) in the form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ′ = rχ, 
y′ = ǫ (V − v), 
w′ = r(10−w − v)/ ln(10), 
χ′ = [24(y − µ) − 3ǫv′]/r, 

(41) 

where time has been rescaled so that t̂  = t/r and ( )′ = d( )/dt̂, w = log10(φ) and · ·

v = exp[(µ − a∗ − b ln(10)w)/a] so that v′ = (v/a)(µ′ − b ln(10)w′), (42) 

from (16)1. 
Computations were performed for V = 100V∗ and ǫ = 2.8 × 10−5. For these values, the 

critical value r̃c for the ODE system is very close to the critical value rc ≈ 10−2.699 for the 
differential-difference system (see Figure 2). 

Figure 4 shows plots relating to the stable periodic orbit that results when r = 10−2.68, slightly 
greater than rc. In the units (h/cs) employed for t, the period for this value of r is Tode ≈
70.73. The new feature introduced by the ODE formulation (14) compared to the spring–block 
formulation (9) of Putelat et al. (2008) is the occurrence of fast oscillations superimposed on 
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the slow increase of the interfacial stress τ = µσ during the quasi-stationary phase. The fast 
oscillations can be understood from equation (14) which behaves at leading order like 

r2 ... µ/24 + µ̇ ≈ (ǫ/r) V, 

since the inertial term ǫr v̈/8 and the interfacial slip rate v ≪ V are negligible over the quasi-
stationary phase. We see that the slow linear ramp results from the quasi-static elastic contribu
tion (ǫ/r) V (see Putelat et al. (2008) for more details) while the fast oscillations originate from 
wave reverberations. This leading order approximation yields an estimate for the frequency of 
ωv = 2 

√
6/r and hence an oscillation period of 

Tv = π r/
√

6 ≈ 1.28 r, (43) 

which is clearly set by the delay induced by the reflection of the waves radiated from the frictional 
interface. We note that these oscillations are intrinsic to the formulation (14). They correspond 
to natural oscillations of the system determined by its thickness and do not depend on the details 
of the friction force. The frictional properties of the interface will determine, in response to this 
forcing, the very low speed sliding. 

No corresponding figure is shown but the same conclusion is reached from the delay formu
lation (29) although in the delay case the vibration period is exactly the delay r. In the quasi-
stationary phase where v ≪ V , at leading order, the unknown function g solves the first order 
linear difference equation g(t) ≈ g(t − r) − V/2 obtained from (29)1. Its solution is 

g(t) = −Vt/(2r) + γ(t), 

where γ(t) is any r-periodic function that satisfies g(0) = γ(0). The interfacial stress follows 
from inserting this leading-order approximation for g(t) into (35)1 to obtain 

τ(t) = ǫVt/r − 2ǫ γ(t) + τss(V) − ǫV/2. 

Solutions for the ODE formulation and the exact DDE formulation are compared in Figure 5. 
The figure includes corresponding plots for the spring–block approximations with M = ρh/8 
(obtained from (14)) and with M = ρh/12 as developed by Putelat et al. (2008). These cannot, 
of course, exhibit the rapid oscillations but follow the exact orbit “on average”, with M = ρh/8 
being perhaps the closer of the two. The full ODE approximation has all the correct qualitative 
features. Quantitatively, however, the period of the exact orbit for the parameters used in Figure 5 
is Tdde ≈ 73.5 and, as observed above, the frequency of the fast oscillations for the ODE system 
is about 28% too high. 

The periodic orbit itself undergoes a bifurcation and becomes unstable as r increases. Nu
merical bifurcation theory for DDEs is less developed than that for ODEs, and the continuation 
code RADAR5 for the DDE formulation provides less information than AUTO does for the ODE 
approximation. We therefore present detailed results for the ODE formulation and anticipate that 
the DDE formulation will display similar features. A detailed study of the DDE formulation will 
be the subject of future work. 

Figure 6 shows bifurcation diagrams for the ODE system, with V = 100V∗ and ǫ = 2.8 ×
10−5. The first feature to notice is the initial Hopf bifurcation from the steady-state solution, at 
r ≈ 10−2.699 . The bifurcation is very mildly subcritical and gives birth to an unstable primary 
periodic orbit which then restabilizes at a saddle-node bifurcation (not distinguishable in Fig. 6). 
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The subcritical or supercritical nature of the Hopf bifurcation appears broadly to be preserved 
between the spring–block approximation and the ODE formulation (see Putelat et al. (2010) for 
a detailed weakly nonlinear analysis of the Hopf bifurcation of a spring–block system). 

Figure 6(a) shows two sets of curves. The upper set gives the bifurcation diagram for the 
interfacial stress drop Δµ = µmax − µmin, together with those for the two spring–block approxi
mations, while the lower set gives the diagram for the elastic stress drop Δy = ymax − ymin. The 
noticeable difference between the amplitudes of Δµ and of Δy is caused by the fast oscillations of 
the instantaneous interfacial stress around its average value y during the quasi-stationary phase. 
Even when inertia is negligible, the equation of motion (14), written with respect to the short 
time scale t̂  = t/r, 

3ǫv′ = 24(y − u) − µ′′ 

reveals that µ � y along a cycle because of the radiative term, conversely to the spring–block 
approximations. The “smooth” cycles produced by these latter provide an envelope for the stick-
slip cycle of the Kelvin–Voigt approximation. Figure 6(a) also presents estimations of Δµ and 
Δy for the exact DDE system.4 In both cases the exact stress drops are larger than those given by 
the ODE approximations, with a relative error which increases with r. 

Along the primary branch of periodic solutions (cf. Fig. 6(b)), several connected period-
doubling bifurcations separated by saddle-node bifurcations are found until a torus bifurcation is 
encountered (at rTR = 10−2.468 for V = 100 V∗ and ǫ = 2.8 × 10−5) from which the periodic orbits 
never become stable again for larger value of the delay. Figure 6(b) gives a blow-up of the bifur
cation diagram for Δy, that shows more clearly the development of complex dynamics through 
successive period-doubling bifurcations. Figure 7 illustrates both the unstable periodic orbit and 
the stable period-doubled orbit after the first period-doubling bifurcation, at the parameter value 
r = 10−2.59. The period of the unstable orbit is Tode ≈ 79.09. The upper graph shows slip velocity 
v against time, normalized to the relevant period (T = Tode for the unstable orbit and T = 2Tode 

for the period-doubled orbit). In real time, the peak velocity for the unstable orbit would appear 
twice, superimposed on the two slightly different peaks realized by the period-doubled orbit. 
The lower figure plots the projections of the orbits on the (µ, v) plane and demonstrates how the 
period-doubled orbit is close but not identical to two successive traces of the unstable periodic 
orbit. 

Figure 8 presents the delay dependence of the stick-slip period of the primary periodic or
bit. Compared with the period of the spring–block approximations, we emphasize that the wave 
reverberation induces lower period values in relation to the loss of energy used for the fast os
cillations during the quasi-stationary phase. Because the period of the stick-slip oscillation is 
proportional to the elastic stress drop Δy (Putelat et al., 2008) 

Tstick-slip ∼ (ǫ/
Δ

r
y 
)V 
, 

the amplitude reduction of Δy shortens the recurrence time of slip events of the elastic layers. Its 
estimation for the DDE formulation was further obtained from the direct numerical integration of 
system (41) with RADAR5 for different values of the delay. It is found that the stick-slip period 
of the DDE formulation is intermediate to the ODE and spring-block approximations 

Tode < Tdde < Tspring-block. 

4The elastic stress drop is calculated from the numerical quadrature in time of y′ = ǫ(V − v) for which the slip rate v 
is provided by (29)1, the function g being computed with RADAR5. 
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Finally, when r is chosen further inside the stick-slip domain, i.e. for values of the delay 
larger than the value at which a torus bifurcation occurs on the primary periodic orbit, some 
features of complex stick-slip patterns can be found as displayed in Figure 9. Using direct nu
merical time integration for both the ODE and DDE systems with r = 10−2.3, V = 100 V∗ and 
ǫ = 2.8 × 10−5, Figure 9 also exposes the limitations of the ODE approximation. The temporal 
patterns are different for the two systems. With variable interfacial stress drops associated with 
variable velocity slip events, the ODE approximation looks more irregular (cf. Fig. 9(a)) than the 
exact DDE system whose cycles share some similarities, disregarding the quasi-stationary fast 
oscillations, with the spring–block relaxation oscillations described in Putelat et al. (2008) at a 
first glance (cf. Fig. 9(b)). For this value of the delay, the DDE cycles are characterised by rather 
constant interfacial stress drop amplitudes combined with small amplitude slip rate oscillations 
around the steady-state line during the inertial phase. The fast oscillations decorating the quasi-
stationary phase show new structures, whose shapes moreover vary from one quasi-stationary 
phase to another. On the contrary, the ODE cycles exhibit inertial phases marked by stick-slip 
like high amplitude oscillations while the quasi-stationary fast oscillations remain sinusoidal, 
although of different amplitude between subsequent quasi-stationary phases. 

5. Conclusion 

The main thrust of this paper is to develop a systematic extension of the dynamics of a 
frictional interface that includes the effects of elastic waves propagating through the (thin) slabs 
either side of the interface and reflecting from the outer boundaries of the slabs. This results in a 
system of nonlinear differential-difference equations that are difficult to treat mathematically. 

We then derive, more systematically than in Putelat et al. (2008), ordinary differential equa
tion approximations to the exact differential-difference equations. The lowest non-trivial order 
approximation provides a slight correction for the mass term in the approximating mass–spring 
system developed in Putelat et al. (2008); it also produces the leading-order term that is required 
to account for wave reflections. Approximations of higher order could be developed quite easily 
but these would contain derivatives of the wave function f as internal variables, in addition to the 
“physical” interface variables τ, v and φ. Approximations of this type could also be developed for 
other problems involving one or more thin layers. The potential advantage of such approxima
tions is that the theory of nonlinear ODEs is very well advanced, and detailed numerical results 
relating to the development of complex dynamics can be obtained using existing code such as 
AUTO. 

We find that the nonlinear frictional dynamics of two identical elastic slabs is governed, in 
addition to the slab driving velocity, by the relative impedance ǫ = ρcsV∗/σ and the relative 
reverberation time r = (h/cs)/(L/V∗). These two dimensionless parameters highlight the role 
of the interfacial state relaxation time-scale L/V∗ and the frictional impedance σ/V∗ in the oc
currence of stick-slip oscillations and their control by the interfacial microstructure evolution 
processes. We show that the steady slipping mode of the frictional interface is destabilized when 
the system’s reverberation time is large compared to the critical delay (39), or equivalently, when 
the system’s relative impedance is smaller than the critical impedance (40); critical values which 
define a surface in the three-dimensional parameter space (V, r, ǫ). Regarding the stick-slip oscil
lations, we find that the slabs’ inertia involved in the wave reverberation drives fast oscillations 
during the quasi-stationary phase of the stick-slip cycle. Their amplitude is significant compared 
to the stress drops which accompany the slip events of the inertial phase. In the present formu
lation, these fast oscillations do not fade away over the stick-slip cycle because of the absence 
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of further energy loss. Interesting extensions of this work would then include the addition of a 
visco-elastic component for the behaviour of the slabs, and the inclusion of only partial reflection 
of the elastic waves at the system boundaries. Overall we conclude that wave propagation cannot 
be neglected for the stick-slip dynamics of such a continuum. 

In detail, the ODE approximation that we develop here is shown to reflect accurately prop
erties of the exact system such as the critical delay (rc) for the onset of the Hopf bifurcation 
from the steady-state solution, and its frequency. It also provides a good picture of the oscilla
tions produced by wave reverberations, although these do not have quite the correct frequency. 
Period-doubling bifurcations arise and are easily detected (numerically) in the ODE system (they 
are less easily accessible in the exact DDE system). Such a collection of period-doubling bifur
cations does not occur for the spring–block approximation. Wave reflections thus provide one 
credible mechanism for the development of complex dynamics of interfacial slip. We remark 
finally that our work retained an assumption of symmetric wave propagation above and below 
the interface. It appears that relaxation of this restriction could be made, but at the expense 
of producing a system with additional variables that cannot be expressed solely in terms of the 
“physical” variables that are defined on the interface. 
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Figure 1: A single interface system: two identical elastic slabs slide in opposite directions at constant speed ±V/2; elastic 
shear waves radiate from the frictional interface and reflect at the boundaries z = ±h/2. 
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Figure 5: Stable periodic orbit: comparison of results obtained for the exact differential-difference system (31) (solid 
line) with approximations. Present ODE formulation (17) (dashed line), spring-block system with M = ρh/8 (dash
dotted line), spring-block system with M = ρh/12 (dotted line). Parameter values: r = 10−2.68 , ǫ = 2.8 × 10−5, 
V/V = 100, Tode ≈ 70.73, Tdde ≈ 73.5. ∗ 
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Figure 6: Bifurcation diagram. The upper figure (a) shows the elastic stress drop amplitude Δy := max(y) − min(y) 
for the ODE approximation (thick lines, lower set of curves). The bifurcation points are indicated. Solid square: Hopf 
bifurcation; open diamonds: period-doubling bifurcation; solid diamond: torus bifurcation of a periodic orbit. For 
comparison, the upper set of curves (thin lines, see legend) shows estimates of the interfacial stress drop Δµ for the ODE 
and for the two spring–block systems (for which Δµ = Δy). Estimates of Δy and Δµ for the DDE are also shown (see 
legend). The lower figure (b) shows a blow-up of the bifurcation diagram for Δy and represents the amplitude of period-
doubled orbits computed with AUTO (solid lines (resp. dashed) correspond to stable (resp. unstable) orbits). Parameter 
values: ǫ = 2.8 × 10−5, V/V∗ = 100. 23 
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Figure 7: Unstable periodic orbit (Tode ≈ 79.09) and stable period-doubled orbit (Tode ≈ 158.18), ODE formulation. 
Parameter values: r = 10−2.59 , ǫ = 2.8 × 10−5, V/V∗ = 100. 
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Figure 8: Evolution of the period of the primary periodic orbit for the ODE formulation and the spring–block approxima
tions (see legend). The + symbol represents the estimation of the period for the DDE system computed with RADAR5. 
Parameter values: ǫ = 2.8 × 10−5, V/V∗ = 100. 
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Figure 9: Comparison of complex dynamics between the ODE and DDE systems from direct numerical time integration. 
The dotted line and the symbol + correspond to the steady-state line and the location of the friction coefficient value. 
Parameter values: r = 10−2.3, ǫ = 2.8 × 10−5, V/V∗ = 100. 
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Material a∗ a b L [m] V∗ [m/s] ρ [m kg−3] G [Pa] σ [Pa] 

paper 0.369 0.0349 0.0489 0.9 × 10−6 10−6 800 106 103


rock 0.6 0.01 0.015 20 10−6 10−6 2500 1010 108
×

Table 1: Typical material parameter values used in the Dieterich law (3) (Heslot et al., 1994, Marone, 1998). 
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