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Outline of development of the Daisy

A.M. Turing

Editorial note: material omitted by, or at variance with, the versions proposed by Swinton1

and/or Saunders2 is indicated in the endnotes. The endnotes also indicate the beginnings of new
manuscript pages. Text in brackets [ ... ] indicates material editorial additions, for example figure
captions. Minor typos are left uncorrected in order to show the unfinished state of the originals
(both typescript and handwritten manuscript pages), but may be commented on in the notes.
Very minor typos are corrected without comment.

3 The theory developed in this paper is limited by a number of assumptions which are by no
means always satisfied. Two are of special importance:

(i) That the pattern passes through a long developmental period without forming any visible
structures, and indeed without the chemical patterns modifying in any way the geometry of
the system. When the visible structures are finally formed, this is done without essential
alteration of the chemical pattern.

(ii) That the pattern is always developed within a ring so narrow that it may reasonably be treated
as a portion of a cylinder.

The first of these assumptions is one which it would be very difficult to avoid making4. It would
be exceedingly difficult to know what to assume about the anatomical changes. For the majority of
plants this assumption is probably false. In the development of the capitulum of a daisy it seems to
be more or less correct, however. The capitulum is appreciably separated from the rest of the plant
by a length of petiole before the development of the capitulum starts. Thus a new start is made
in the development of the capitulum. It is not appreciably influenced by the proximal structures.
That this is the case is confirmed by the following facts:

(a) The directions of the generating spirals of the rosette and of the capitulum are statistically
independent. Thus of 15 capitula and corresponding rosettes examined by the author, 4 cases
had both rosette and capitulum left handed. 5 In five cases the rosette was left handed but the
capitulum right handed, and in four the rosette right handed and the capitulum left handed;
in one case both were right handed. Thus in nine out of the fifteen cases, the rosette and the
capitulum were in opposite6 directions.

(b) Beneath the thirteen bracts enclosing the capitulum, there are no other distinguishable struc-
tures.

It is suggested that the development of the daisy proceeds essentially as follows. First, the petiole
grows up from the rosette without any differentiation either of a visible anatomical form or of an
invisible chemical form. Subsequently, the distal end of the petiole undergoes two kinds of change.
Its diameter increases, and at the same time a chemical pattern begins to form7. The wavelength
of this pattern8 is determined by purely chemical considerations, and there is therefore little reason
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Figure 1: [Editorial note: Graph of G(η2) against η
2. The annotation reads ‘Range of shortest

lattice vector’. Note that the left-hand-side of the curve has been redrawn to produce a local
maximum at η = 0, to agree better with the forms of the equations discussed in the section headed
‘The equation chosen for computation’ below. Detail taken from page AMT/C/24/6. Copyright c©
W.R. Owens.]

to expect the wavelength to change much. As the diameter increases further, therefore, the pattern
will have to change in order that it may continue to fit on the petiole with its new diameter. A very
rough description of the concentration patterns during this process may be described as follows:

9 The concentration U of one of the morphogen concentrations x = (ρθ, z) is to be given by the
formula

U =
∑

η

ei(η,x)G(η2)W (x) (1)

where the summation is to be over the lattice

(

A B
C D

)

reciprocal to

(

a b
c d

)

. The function

G(η2) is to have a maximum near the square of the shortest vector of the lattice

(

A B
C D

)

. A

suitable form for G(η2) and the suitable range for the shortest vectors of the reciprocal lattice 10
(

A B
C D

)

are given in Figure 1.

The function W (x) should depend only on z and typically may be of the form exp(−z2/2σ2).
The ratio of the standard deviation σ to the shortest vectors of the lattice

(

a b
c d

)

is probably

between 2 and 5. The inclusion of this factor W (x) of course results in the pattern not having the

symmetry of the lattice

(

a b
c d

)

, or of any other lattice. But it is nevertheless possible to use the

lattice

(

a b
c d

)

applying to the formula (1) to describe the pattern instead of the symmetry lattice.

It remains only then to describe what in the lattice is to be used for each value of the diameter of
the petiole. 11 A suitable form for the lattice is the limiting divergence angle lattice described in
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Part I. Clearly this description cannot hold at all times. It breaks down for the period during which
the pattern is beginning to form. There may also be a period during which there is a pattern with
reflexion symmetry (e.g., a decussate pattern), and the formula above will be invalid for this period
also. The sections which follow are concerned with considering the chemical conditions under which
this sort of description of the pattern very broadly holds.

At a certain point in the development of the daisy, the anatomical changes begin. From this
point, as has been mentioned, it becomes hopelessly impracticable to follow the process mathe-
matically; nevertheless it will be as well to describe how the process does proceed (at least in the
author’s opinion). In the regions of high concentration of one of the morphogens, growth is ac-
celerated, and subsequently florets appear. Also, the chemical pattern begins to spread inwards
towards the apex, and the florets follow it. The wave length of course remains essentially unaltered
during this inward movement, and therefore, as the apex is approached the parastichy numbers fall,
producing the usual disc pattern, possibly with some slight irregularity at the very centre. There
may still be some growth of the capitulum itself, but the pattern can no longer adjust itself to keep
the wavelength constant. Either the chemical pattern has lost all its importance and gives way to12

the relatively unchangeable anatomical pattern or else secretions from the new structures ensure
that the wavelength of the chemical pattern increases with that of the anatomical pattern.

A special point arises in connection with the daisy, the formation of the ring of 13 bracts. This
number is very constant. The author does not recall finding any specimen with a different number
of bracts, excepting a very few deformed or damaged specimens. It is suggested that this ring of
bracts is formed as follows. Within the band of lattice pattern there appears at some stage a ring
of reduced activity, so that the band becomes divided into two separate bands. The more distal of
these bands continues its development and eventually forms the floret pattern. The proximal band,
however, is rather narrow and weak (it is fruitless13 to enquire why). 14 This narrowness results
in its degenerating from a lattice pattern into a ring pattern, i.e. into a ring of maxima uniformly
placed round the cylinder. This process is described in ... .

The number of maxima in the ring under these circumstances will be one of the three principal
parastichy numbers, usually the largest of the three. In view of the fact that the daisy develops
according to the normal Fibonacci pattern, this number must be expected to be a Fibonacci number,
as it is.

15 In order to justify this account it is necessary to describe a chemical system for which the
pattern develops accordingly. No actual system will actually be described, nor even imaginary
chemical reactions as described in Turing (1951). However a partial differential equation will be
obtained which is thought to give a good approximation to mark the behaviour of certain kinds of
chemical system. The differential equation has a number of parameters and it is necessary to find
values for these parameters which will make the differential equation behave appropriately. The
choice of parameters is largely made on theoretical grounds, described in this paper, but in order
to be sure that the differential equation does really describe a development such as that mentioned
above, it is necessary to follow its behaviour by computation.

16 Considerations governing the choice of parameters

The assumptions to be made concerning the development of the pattern are

(i) That the pattern is described by functions U , V of position on the cylinder and of time,
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satisfying the partial differential equations

∂U

∂t
= φ(∇2)U + I(x, t)U +GU2 −HUV

V = ψ(∇2)U2

(ii) The operator φ(∇2) is supposed to take the form

φ(∇2) = I2

(

1 +
∇2

k20

)2

(iii) The operator ψ(∇2) is supposed to take the form

ψ(∇2) =
1

1−∇2/R2

though in the computations other forms may be used, taking the value zero outside a finite
region.

(iv) A quasi-steady state is assumed to hold, i.e. the time derivative ∂U/∂t is supposed to be
zero, or so near zero as is consistent with slow changes in the radius of the cylinder. This
assumption of course implies that certain details as to the effect of the growth on the equation
need not be considered.

(v) The function I(x, t) is supposed given in advance. At each time it may be supposed to take
the form I0 − I2z

2/ℓ2. The quantity I0 is initially supposed to be negative and to increase
to an asymptotic value, reaching very near to it when the optimum wavelength is about one
third of a circumference. The quantity ℓ can remain very nearly constant or increase slightly
with increasing radius. 17 Clearly in view of (iv), it is only the variation of I0 and ℓ with
radius which is significant, not the variation with time.

If we concentrate our attention on the period of time in which the optimum wavelength is less
than a third of a circumference, I0 and ℓ may be taken as constants, i.e., on a par with G, H,
I2, k0, R. We have to consider what are appropriate values for these seven quantities. Of the
seven quantities there are really only four that are dimensionless. In other words, if we are quite
uninterested in the units of time, length and concentration, new units may be introduced which will
result in three of these parameters taking the value unity. Actually it is not advisable to do this
reduction in every context. A certain amount of interest attaches to the relation of the time and
space scales of the phenomena and the diffusion constants for the morphogens in the tissue. The
enormous variety of possible reaction constants, and the fact that exceedingly weak concentrations
of morphogens could be effective to influence growth, mean that our ignorance of the other two
dimensionful quantities is too great for there to be any value in considering them in detail.

If three of the parameters are to be taken as unity, appropriate ones seem to be k0, fixing the
unit of length as the optimum radian wavelength, I2, fixing the unit of time, and G, fixing the unit
of concentration.

18 The parameters required are thus reduced to four, viz R, H, I0, ℓ. When actual computations
are being carried out, the number of quantities to be specified is again increased to seven by the
inclusion of the radius ρ, and two other quantities I1 and h concerned with the method of calculation.
Of these, only the role of h need be mentioned here. In the actual calculations the function I0−z2/ℓ2
is replaced by I0 − h2

π2ℓ2
sin2 πz

h , and the pattern is periodic in z with period h. But this is of course
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only a mathematical device. The calculations are applied to the Fourier coefficients of U and the
number of these that has to be considered is proportional to h. One therefore has to make h as
small as possible without the function19 I0 − h2

π2ℓ2 sin
2 πz

h differing too much from I0 − z2/ℓ2 and,
what is more important, without the bands of pattern becoming so close as to influence one another
appreciably.

The main consideration governing the choice of the quantity R is that an excessively small value
has the effect that large areas of more or less uniform pattern tend to be unstable and to break up
into a number of separate patches. This phenomenon may be explained as follows. The amplitude
of the waves is largely controlled by the concentration V of ‘poison’. If the quantity R is small, it
means that the poison diffuses very fast. This reduces its power of control, for if the U values are
large in a patch and large quantities of poison are produced, the effect of the poison will mainly be
to diffuse out of the patch and prevent the increase of U in the neighbourhood.

20 Another way of expressing the effect is that the poison, acting through the HUV term,
prevents the growth of waves whose wave vectors are near to that of a strong wave train. The
quantity R expresses essentially the range of action in the wave-vector space. If it is too small,
there will be liberty for ‘side bands’ to develop round the strong components. These side bands will
represent the modulation of the patchiness. If R is allowed to become too large, it can happen that
this ‘side band suppression’ effect even prevents the formation of a hexagonal lattice; neighbouring
points around the hexagon of wave-vectors suppress one another. This however happens only with
certain values of the other parameters. In the actual calculations (initially, at any rate) the function
chosen for ψ(∇2) was given by21

ψ(r2) =







(

1−
(

r
rmax

)2
)2

, r ≤ rmax,

0, r ≥ rmax

(2)

with rmax

k0
usually about 1√

2
. 22 (This function calculated in ‘Subgroup smooth’.)

23 The choice of the parameters H, I0, ℓ is assisted by obtaining an approximate form of solution
valid for patterns covering a large area, i.e. in effect with ℓ very large. One may then, as a very crude
approximation, suppose that when I(x, t) varies from place to place one may find near each point
more or less the solution which would apply over the whole plane if the value of I appropriate for that
point were applied to the whole plane. A nomogram for this purpose is given elsewhere. Another
approach to the problem is provided by considering the effect of the terms φ(∇2)U and I(x, t)U
taken in conjunction in the absence of the terms GU2 − HUV . The term I(x, t)U may then be
regarded as modifying the effect of the ψ(∇2)U term, so that ψ(∇2)U has to be replaced by another
function of the wave vector, no longer dependent on the length alone. Having expressed the effect
of the I(x, t) term in this way, it may be assumed, as another (alternative) crude approximation,
that the effect of this term is the same even in the presence of the terms GU2 −HUV . Clearly this
approximation will not be too unreasonable if the really important term is φ(∇2)U .

24 Early stages in pattern formation

The most probable course of pattern formation in its early stages is something as follows. The
value of I0 remains sufficiently small to preclude the formation of any pattern until ρk0 has a value
somewhere between 2 and 3. At this stage, when I0 reaches the appropriate value the homogeneous
distribution (or at least θ-independent) breaks up and gives rise to a pattern which is symmetrical
under rotation through 120◦, i.e., which has three maxima and a reciprocal lattice pattern as below
[i.e. in Figure 2(a)].
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(a) (b)

Figure 2: [Editorial note: sketches of reciprocal lattices that are those referred to in the text. Both
figures are details from AMT/C/24/15. Copyright c© W.R. Owens.]

If I0 increases further, this pattern itself becomes unstable and develops into a more or less
hexagonal pattern without reflection symmetry, as below [ i.e. in Figure 2(b)]. 25

26 The equation chosen for computation

The conclusion of the preceding section is that the chemical behaviour of the morphogens should
be described by the equations

dU

dt
= φ(∇2)U + I(x)U +GU2 −HUV

dV

dt
= ψ(∇2)V +KU2

It is necessary to choose some particular functions to replace the arbitrary functions φ, ψ, I,
parameters being allowed, and to discuss the values of such parameters and of K, G, H which
would be most appropriate.

In the second equation determining the distribution of concentration V , it will be appropriate
for the term ψ(∇2) to represent a combination of diffusion and monomolecular decay, thus

dV

dt
= C1∇2V − C2V + C3U

2

If the diffusion and decay occur fast by comparison with the reactions which are responsible for the
term KU2, or if one is really only interested in equilibrium effects, one may put V = C3

C2

U2

1−C1
C2

∇2
.

The essential property required of the function φ is that it should have a maximum for some
real (negative) argument. The most natural form for it is therefore −A(∇2 + k20)

2. Then 2π/k0
is the optimum wavelength, i.e. the wavelength of the waves which are least quickly damped out.
(This form of the function is not one of the forms which arose in section ... of Turing I but is a
limiting case of such forms.)
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27 One should allow for a constant term either in the wavelength function φ(∇2) or the position
function I(x) and since it has not been included in the former it will have to be included in the
latter. If one is interested in development on a surface of revolution, whose points are described
by coordinates (z, θ), whose metric is ds2 = ρ2dθ2 + dz2. If diffusion is limited to the surface then

∇2V means 1
ρ2

∂2V
∂θ2

+ 1
ρ

d
dz

(

ρ∂V
∂z

)

. The function I(x) must be axially symmetrical, and so must be
a function of z only. The assumption made here is that the surface of revolution is a cylinder, so
that ρ is constant, and that I(x) takes the form I − Lz2. Making use of all these assumptions the
equation may be written

∂U

∂t
= −A(∇2 + k20)

2U + IU − Lz2U +GU2 −H
C3

C2

(

U2

1− C1
C2

∇2

)

U

Before computing one must remove some of the otiose constants by reducing the equation to a
dimensionless form. Clearly one may suppose C3 = C2 and put C1/C2 = σ2/k20 . Multiplying both
sides of the equation by G

A2k80
it may be written

d
(

GU
Ak40

)

d(Ak40t)
=

(

−
(

1 +
∇2

k20

)2

+
I

Ak40
− L

Ak60
(k0z)

2

)

(

GU

Ak40

)

+

(

GU

Ak40

)2

− HAk40
G2

(

GU
Ak40

)2

1− σ2∇2

k20

· GU
Ak40

28 If one then takes t′ = Ak40t, U
′ = GU

Ak40
, I ′ = I/(Ak40), L

′ = L/(Ak60), H
′ =

HAk40
G2 and z′ = k0z,

∇′2 = ∇2/k20 the equation may be written

dU ′

dt′
= −(1 +∇2)2U ′ + I ′U ′ − L′z′

2
U ′ + U ′2 −H ′

(

U ′2

1− σ2∇′2

)

U, 29

∇′2 =
1

ρ′2

(

d

dθ

)2

+
d2

dz′2

This form will be used, but with the dashes omitted.
It will be seen that there are now five parameters

The radius ρ in optimum radian wavelengths

The instability I.

The width parameter L−1/2 (in optimum radian wavelengths).

The amplitude controlling factor H.

The amplitude control diffusion factor σ.

The optimum radian wavelength has been chosen to be the unit of length, and the unit of time
has been chosen in such a way that there is a unit difference in exponential rate of growth between
the waves of infinitely long wavelength and those of optimum wavelength.

30 Lattice solutions and their stability

In the case where L = 0 the equations will usually have equilibrium solutions which have lattice
symmetry. Such equilibrium solutions are in fact phyllotactic systems in the sense of part I 31.
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The phyllotactic systems of botany do not arise in this way, as will appear in ... . Nevertheless a
discussion of these equilibrium solutions will throw some light on the problem.

If one is given a particular lattice of congruences and the values of the parameters I, H, σ it
is possible to calculate the equilbrium function U . This is usually a task with the range of hand
computation. The function U may best be given as a sum over the inverse lattice

U =
∑

Aue
i(x,u)

From a trial value of the coefficients Au one may calculate the coefficients in U2 and so in U2

1−σ2∇2

and then in H
(

U2

1−σ2∇2

)

U , and thus the whole of the right hand side of ( ... ). The coefficients are

then altered so that the error will be corrected by the change in (I + (1 +∇2)2)U and the process
repeated.

In practice a good idea of the behaviour of the solutions can be obtained by considering only
relatively few terms in ( ... ). 32 The most satisfactory assumption is to consider the zero vector and
the three principal (inverse) vectors, each with positive and with negative sign. If these non-zero
vectors are numbered k1,k2, . . . ,k6 in the anticlockwise order of their directions, and if the suffixes
are reckoned modulo six, then kr−1 + kr+1 = kr. The form assumed for U is now

U0 = ξ +

6
∑

r=1

ηre
i(x,kr)

where ξ is real and ηr = η̄r+3. The assumption that there are no other terms would have been
justified if φ(−r2) had the value −∞ for r greater than a certain r1, which is itself greater than
the first three principal inverse vectors, but shorter than any of the other non-zero vectors of the
lattice. It will be convenient to make this assumption for definiteness. It will also be supposed that
ψ(−r2) = 0 if r exceeds a certain value r0 which is itself less than the length of the principal inverse
vector. Now

U2
0 = ξ2 +

6
∑

r=1

|ηr|2 + 2

6
∑

r=1

ηr−1ηr+1e
i(x,kr) + 2ξ

6
∑

r=1

ηre
i(x,kr)

+ terms with wave vectors longer than r1.
From this one may deduce that ψ(∇2)U2 is the constant V = ξ2 +2

∑3
r=1 |ηr|2. The conditions

for equilibrium are then

(φ(0) −HV )ξ + V = 0

(φ(−k
2
r)−HV + 2ξ)ηr + 2ηr−1ηr+1 = 0

33 By a change of origin one may ensure that the coefficients ηr are all real. They will therefore
be supposed to be so. It will be shown later that the equilibrium is unstable unless also ξ and η1η2η3
are positive, and in this case one may by a further change of origin ensure that each ηr is positive.

To investigate stability one may put U = U0 + εei(χ,x)W where W is a sum of the form ... , viz

W = x+

6
∑

r=1

yre
i(kr ,x)

Such terms, with a given χ, interact on one another in the variational equation, but do not act on
terms with other values of χ. It will be supposed that χ is sufficiently small that the assumptions
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made about the functions φ, ψ and the various vectors of the lattice still remain true when those
vectors are increased by χ. The variational equation satisfied by W is

dW

dt
= e−i(χ,x)φ(∇2)ei(χ,x)W + 2WU0 − 2HU0e

−i(χ,x)ψ(∇2)ei(χ,x)(WU0)−HWV

i.e.

dx

dt
= φ(−χ

2)x+ xξ + 2
6
∑

r=1

ηryr+3 − 2Hξψ(−χ
2)
(

xξ +
∑

ηryr+3

)

dyr
dt

=
(

φ(−(kr + χ)2) + 2ξ −HV
)

yr + 2ηr−1yr+1 + 2ηr+1yr−1 + 2xηr

−2Hηrψ(−χ
2)
(

xξ +
∑

ηryr+3

)

34 Now putting

y(+)
r =

1√
2
(yr + yr+3)

y(−)
r =

1√
2
(yr − yr+3)

so that

ηr = ηr+3 y(+)
r = y

(+)
r+3 y

(−)
r+3 = −y(−)

r

dx

dt
=

(

φ(−χ
2) + 2ξ −HV − 2Hξ2ψ(−χ

2)
)

x+ 2
√
2

3
∑

r=1

ηry
(+)
r

(

1−Hξψ(−χ
2)
)

dy
(+)
r

dt
=

(

φ(−(kr + χ)2)) + φ(−(kr − χ)2)

2
+ 2ξ −Hx

)

y(+)
r

+
φ(−(kr + χ)2)− φ(−(kr − χ)2)

2
y(−)
r + 2ηr−1y

(+)
r+1 + 2ηr+1y

(+)
r−1

+2
√
2(1−Hξψ(−χ

2))ηrx− 4Hηrψ(−χ
2)

3
∑

s=1

ηsy
(+)
s

dy
(−)
r

dt
=

φ(−(kr + χ)2)− φ(−(kr − χ)2)

2
y(+)
r + 2ηr−1y

(−)
r+1 + 2ηr+1y

(−)
r−1

+

(

φ(−(kr +χ)2) + φ(−(kr − χ)2)

2
+ 2ξ −HV

)

y(−)
r

The case χ = 0 is of great importance. One may first investigate the behaviour of y
(−)
1 , y

(−)
2 , y

(−)
3 .

1

2

dy
(−)
r

dt
= ηr−1y

(−)
r+1 + ηr+1y

(−)
r−1 +

1

2
(φ(−k

2
r) + 2ξ −HV )y(−)

r

= ηr−1y
(−)
r+1 + ηr+1y

(−)
r−1 −

ηr−1ηr+1

ηr
y(−)
r

i.e.

1

2

dy
(−)
r

dt
=
∑

Arsy
(−)
s

9



Ars =







−η2η3
η1

η3 −η2
η3 −η1η3

η2
η1

−η2 η1 −η1η2
η3







35 36 The eigenvectors are (η1, 0,−η3) and (0, η2, η3) both with eigenvalue 0 and (η−1
1 ,−η−1

2 , η−1
3 )

with eigenvalue −η1η2η3(η−2
1 + η−2

2 + η−2
3 ).

There is thus instability if η1η2η3 < 0 and so we may suppose η1η2η3 > 0, and, if necessary by a
change of origin, one may arrange that η1, η2, η3 are all positive. The eigenvectors with eigenvalue
0 correspond to small shifts of origin.

The matrix corresponding to x, y
(+)
1 , y

(+)
2 , y

(+)
3

37 is

2











µ0
√
2η1(1−Hξ)

√
2η2(1−Hξ)

√
2η3(1−Hξ)√

2η1(1−Hξ) −η2η3
η1

− 2Hη21 η3 − 2Hη1η2 η2 − 2Hη1η3√
2η2(1−Hξ) η3 − 2Hη1η2 −η1η3

η2
− 2Hη22 η1 − 2Hη2η3√

2η3(1−Hξ) η2 − 2Hη1η3 η1 − 2Hη2η3 −η1η2
η3

− 2Hη23











2µ0 = φ(0) −HV + 2ξ(1−Hξ)

= −V
ξ
+ 2ξ(1−Hξ)

38 It is not proposed to investigate the eigenvectors of this matrix in the gneral case, but only
in the case that k

2
1 = k

2
2 = k

2
3 = k2, η1 = η2 = η3 = η. There are two eigenvectors of the form

(x, y, y, y), with eigenvalues satisfying the equations

µ0x+ 3γy =
1

2
λx

γx+ (η − 6Hη2)y =
1

2
λy

where γ =
√
2γ(1−Hξ), i.e.

1

4
λ2 − 1

2
λ(η − 6Hη2 + µ0) + µ0(η − 6Hη2)− 3γ2 = 0

There are also eigenvectors (0, 1, ω, ω2), (0, 1, ω2, ω) where 1+ω+ω2 = 0, each with the eigenvalue
−4η which is negative. The equilibrium is stable therefore provided both roots of ( ... ) are negative,
i.e. provided 6Hη2 − η − µ0 and µ0(η − 6Hη2) − 3γ2 are both positive. Now 6Hη2 − η − µ0 =
6Hη2 + 1

2φ(−k
2)− 1

2φ(0) + ξ2H and is positive provided φ(−k
2) ≥ φ(0) which certainly applies for

all practical cases.
39 The roots of ( ... ) may perhaps be most satisfactorily investigated by considering that this

is also the equation for the stability of the equation

dξ

dt
= (φ(0) −HV )ξ + V

dη

dt
= (φ(−k2)−HV + 2ξ)η + 2η2

arising by putting η1 = η2 = η3 = η4 = η5 = η6 = η in ( ... ). Put φ(0) = X, φ(−k2) = Y

dξ

dt
= Xξ − F (ξ, η,H)ξ F (ξ, η) = (ξ2 + 6η2)

(

H − 1

ξ

)

dη

dt
= Y η −G(ξ, η,H)η G(ξ, η) = −2ξ − 2η +H(ξ2 + 6η2)

10



The equilibrium conditions are then X = F , Y = G. The condition for stability is that the matrix

(

X − F − ξ ∂F∂ξ −ξ ∂F∂η
−η ∂G

∂ξ Y −G− η ∂G
∂η

)

40 has no characteristic root with positive real part, i.e. that the trace be non-positive and the
determinant non negative. The trace is

−ξ ∂F
∂ξ

− η
∂G

∂η
= −2ξ2

(

H − 1

ξ

)

− 1

ξ
(ξ2 + 6η2) + 2η − 12η2

= F −G− 2ξ2H − 2η2

and is negative since F −G = X − Y < 0.
41 The determinant is ξη

(

∂F
∂ξ

∂G
∂η − ∂F

∂η
∂G
∂ξ

)

i.e. ξη ∂(F,G)
∂(ξ,η) or one might write it as ξη ∂(X,Y )

∂(ξ,η) if F

is identified with X and G with Y . The question as to the stability is therefore very closely related
to the question as to how the values of ξ, η are to be obtained from the values of X, Y , H. The
regions of stability are divided from the regions of instability by curves on which either ξ = 0 or on
which the Jacobian ∂(F,G)

∂(ξ,η) vanishes. P.T.O.42

A convenient method of obtaining the values of ξ, η from X, Y , H is first to make a change of
scale which will result in Y −X having the value 1, thus

d(ξ/(Y −X)

t(Y −X)
=

X

Y −X

ξ

Y −X
− F

(

ξ

Y −X
,

η

Y −X
,H(Y −X)

)

ξ

Y −X

d(η/(Y −X))

d(t(Y −X))
=

Y

Y −X

η

Y −X
−G

(

ξ

Y −X
,

η

Y −X
,H(Y −X)

)

ξ

Y −X

However the condition Y − X = 1 automatically applies with the form of equation adopted in
section ... . When this condition applies the equilibrium condition can be written

−2η − 2ξ = x−HV = 1− V

ξ
(. . .)

The relation

ξ2 + 2ηξ − 6η2 + ξ = 0 (. . .)

therefore connects ξ and η independently of the values of X and H.
43 A convenient parametric form of this relation is obtained by expressing both ξ andη in terms

of the ratio σ = η/ξ. For each value of σ one also obtains a value of V and a linear relation between
X and H. These lines in the (X,H) plane envelope a curve. The curve and the relations of ξ, η,
V , σ are given by

ξ−1 = 6σ2 − 2σ − 1, η−1 = ξ−1σ−1

H−1
1 = 2ξ +

6

14 + η−1
, V = ξ2 + 6η2

X1 = V H1 − 2ξ − 2η

The curve provides a convenient method for obtaining the values of ξ, η corresponding to given
(X0,H0). From (X0,H0) one may draw a tangent to the envelope. The slope of this tangent
determines the value of V , and therefore of σ, ξ, η. The curve is shown in Fig X [i.e. Figure 3
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below.] which also includes nomographic arrangements for determining ξ and η. This method of
determining ξ and η also settles the stability question. Double roots for ξ, η are obtained when two
tangents from (X0,H0) coincide, i.e. when (X0,H0) lies on the envelope itself. Such points separate
the regions of stability from the regions of instability in the plane of (σ,H0). Stable solutions are
obtained from tangents such that the value H1 at the point of contact is less than H0 at the point
from which the tangent is drawn.

[Summary]

44 The solutions which are to be considered in this paper are ones which resemble in some way
or other these lattice solutions with η1 = η2 = η3. They are very stable under changes which are
centrally symmetrically, or if they are unstable for such changes the effect of such a change is for the
function to drop to zero. There is no need therefore to give much further consideration to stability
under symmetrical disturbances, provided that the existence of equilibrium has been investigated.
The disturbances which are centrally antisymmetrical (about a centre of symmetry of the solution
itself) must however be considered in further detail. This is partly because in the computations it
is proposed to consider only solutions which have a centre of symmetry. If a solution has a centre of
symmetry at one moment it will of course continue to have such symmetry thereafter, but only pro-
vided it is not disturbed. It is essential that the solutions be stable with respect to antisymmetrical
disturbances in order that the computations should describe the facts reasonably. As has been seen
there is every reason to expect that there is stability with respect to symmetrical disturbances, but
even if there were not, this fact would appear in the computation. It is fortunate therefore that it
was possible to investigate the stability with respect to the antisymmetrical disturbances without
making the assumption η1 = η2 = η3. For one of the characteristic disturbances (with χ = 0) there
is very high stability, 45 (characteristic value −η1η2η3

∑ 1
η2i
). The other two characteristic distur-

bances (at ... ) are equivalent to small displacements of the lattice. The characteristic value is
zero for both, and it is necessary therefore to consider the problem with more accurate assumptions
before it is possible to tell whether there is stability or not.
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