84 research outputs found

    Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas

    Get PDF
    We study the AC optical and hall conductivities of Dp/Dq-branes intersections in the probe approximation and use sum-rules to study various associated transport coefficients. We determine that the presence of massive fundamental matter, as compared to massless fundamental matter described holographically by a theory with no dimensional defects, reduces the plasma frequency. We further show that this is not the case when the brane intersections include defects. We discuss in detail how to implement correctly the regularization of retarded Green's functions so that the dispersion relations are satisfied and the low energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio

    Preclinical Evidence That Trametinib Enhances the Response to Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma.

    Full text link
    Sunitinib and pazopanib are antiangiogenic tyrosine kinase inhibitors (TKI) used to treat metastatic renal cell carcinoma (RCC). However, the ability of these drugs to extend progression-free and overall survival in this patient population is limited by drug resistance. It is possible that treatment outcomes in RCC patients could be improved by rationally combining TKIs with other agents. Here, we address whether inhibition of the Ras-Raf-MEK-ERK1/2 pathway is a rational means to improve the response to TKIs in RCC. Using a xenograft model of RCC, we found that tumors that are resistant to sunitinib have a significantly increased angiogenic response compared with tumors that are sensitive to sunitinib in vivo. We also observed significantly increased levels of phosphorylated ERK1/2 in the vasculature of resistant tumors, when compared with sensitive tumors. These data suggested that the Ras-Raf-MEK-ERK1/2 pathway, an important driver of angiogenesis in endothelial cells, remains active in the vasculature of TKI-resistant tumors. Using an in vitro angiogenesis assay, we identified that the MEK inhibitor (MEKI) trametinib has potent antiangiogenic activity. We then show that, when trametinib is combined with a TKI in vivo, more effective suppression of tumor growth and tumor angiogenesis is achieved than when either drug is utilized alone. In conclusion, we provide preclinical evidence that combining a TKI, such as sunitinib or pazopanib, with a MEKI, such as trametinib, is a rational and efficacious treatment regimen for RCC

    Constraints on perception of information from obstacles during foot clearance in people with chronic stroke

    Get PDF
    The aim of this study was to examine effects of different types of task constraints on coupling of perception and action in people with chronic stroke when crossing obstacles during a walking task. Ten participants with hemiplegic chronic stroke volunteered to walk over a static obstacle under two distinct task constraints: simple and dual task. Under simple task constraints, without specific instructions, participants walked at their preferred speed and crossed over an obstacle. Under dual task constraints the same individuals were required to subtract numbers whilst walking. Under both distinct task constraints, we examined emergent values of foot distance when clearing a static obstacle in both affected and unaffected legs, measured by a 3D motion tracking system. Principal Component Analysis was used to quantify task performance and discriminant analysis was used to compare gait performance between task constraints. Results suggested that patients, regardless of affected body side, demonstrated differences in perception of distance information from the obstacle, which constrained gait differences in initial swing, mid-swing and crossing phases. Further, dual task constraints, rather than hemiplegic body side, was a significant discriminator in patients' perceptions of distance and height information to the obstacle. These findings suggested how performance of additional cognitive tasks might constrain perception of information from an obstacle in people with chronic stroke during different phases of obstacle crossing, and thus may impair their adaptive ability to successfully manoeuvre around objects

    The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates

    Get PDF
    <p/> <p>Background</p> <p>Stearoyl-CoA desaturases (SCDs) are key enzymes involved in <it>de novo </it>monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort.</p> <p>Results</p> <p>We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian <it>Xenopus tropicalis </it>we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, <it>Scyliorhinus canicula</it>, a representative of the oldest extant jawed vertebrate clade. Expression analysis in <it>S. canicula </it>shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function.</p> <p>Conclusion</p> <p>We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.</p

    Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets

    Get PDF
    Objectives: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F’s genotype by environment project has released 2014 and 2015 datasets to the public, with 2016 and 2017 collected and soon to be made available. Data description: Datasets include DNA sequences; traditional phenotype descriptions, as well as detailed ear, cob, and kernel phenotypes quantified by image analysis; weather station measurements; and soil characterizations by site. Data are released as comma separated value spreadsheets accompanied by extensive README text descriptions. For genotypic and phenotypic data, both raw data and a version with outliers removed are reported. For weather data, two versions are reported: a full dataset calibrated against nearby National Weather Service sites and a second calibrated set with outliers and apparent artifacts removed

    Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells

    Get PDF
    BACKGROUND:The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation. METHODOLOGY/PRINCIPAL FINDINGS:We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis. CONCLUSIONS/SIGNIFICANCE:When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis

    Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection

    Get PDF
    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage
    corecore