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1 Summary of results

The interpretation of the physics encountered in the Quark-Gluon Plasma (QGP) from the

point of view of the gauge/gravity correspondence finds an overwhelming support in the

calculation of thermodynamic quantities and hydrodynamic transport coefficients, which

are essential to understand the late-time behavior of the QGP in computational simulations.

Thermodynamic quantities in the field theory are calculated by evaluating the classical

action of the dual gravitational model on-shell. In contrast, hydrodynamic quantities

are obtained by calculating the correlation functions, which in lattice simulations rely on

postulating the form of the spectral density. As pointed out in [1], sum rules may be used

as constraints on the spectral densities obtained from the gauge/gravity correspondence,

relating the integral of — roughly — the spectral density with thermodynamic quantities

and transport coefficients.

In this paper we study sum rules for the current-current correlator of fundamental

matter at finite temperature. A similar analysis has been done for N = 4 SYM in [2],

where a considerable difference between the calculations at strong and weak coupling was

found. We will restrict to the strongly coupled regime, using the AdS/CFT correspondence

to study different plasmas described in the string theory side by intersections of two stacks

of Dp-branes with different dimensionalities. We will consider Nf probe Dq-branes in the

background created by Nc ≫ Nf Dp-branes.

The first result of the present work is the determination of the effects of having matter

transforming in the fundamental representation on the collective modes of the plasma,
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namely on the plasma frequency. This is related to the current-current correlator by a sum

rule for the AC conductivity [3]

∫

∞

−∞

Re σ(ω)dω = ǫ0 ω
2
p . (1.1)

The AC conductivity is related to the retarded current-current correlator, G̃R(ω), by the

expression iωσ(ω) = G̃R(ω). We can then use the prescription in [4] to obtain the retarded

Green’s function for the holographic system and evaluate the integration of the sum rule.

This will give us a divergent retarded correlator (and conductivity) in the large frequency

limit. To treat this divergence we have to take a subtraction scheme in which we take the

difference between two of these correlators. This is analogous to the Ferrell-Glover-Tinkham

sum rule in superconductivity studies, which relates the difference between Green’s func-

tions at different temperatures (see for example [5]). In this case the evaluation of the

sum rule for the conductivity will not give us the value of the plasma frequency but the

difference between ω2
p in both setups. Schematically, we find

ǫ0 ω
2
p(Mq, T ) − ǫ0 ω

2
p(Mq = 0, T = 0) ∝

{

−NfNcM
2
q /λ if no defect

0 if defect
, (1.2)

with Mq the dimensionful mass of the fundamental matter and λ the ’t Hooft coupling.1

Our results show that the value of the plasma frequency gets reduced in a thermal system

when massive matter in the fundamental of SU(Nc) is included in a brane intersection

without defects, the reduction being proportional to the mass of the fundamental degrees

of freedom squared. However, we are not aware of a calculation of the plasma frequency

for a stack of Dp-branes, therefore we are calculating the effects of fundamental matter on

an unknown quantity. It presumably scales with N2
c , whereas our correction scales with

NfNc ≪ N2
c and thus is subleading in the probe approximation.

The impact of defects2 in the brane intersection in the system is noteworthy. Our

results suggest that the integration of the spectral function over the frequency in the

transverse vector channel (i.e., the integration of the real part of the conductivity) is zero

or non-zero depending on whether the theory is a defect or not. This suggests that this is

an example of an observable which is sensitive not only to the number of dimensions of the

plasma in the IR, but also to the dimensionality of the UV theory (which can be reduced

by means of a Kaluza-Klein compactification). Though we have not been able to find a

good reason for this difference, we have checked that this rule holds true for a large class

of brane intersections.

We turn our attention next to a sum rule involving the Hall conductivity. To study

it we need to include in our setup an external magnetic field as well as a finite baryon

density. Focusing on the D3/D7 intersection in the probe approximation, we will consider

the Hall angle, defined as the quotient between the Hall and optical conductivities tH =

tan θH ≡ σxy/σxx, which gives the angle between the electric current and the electric

1In p 6= 3, ǫ0 is dimensionful. Our result (1.2) suggests that it is actually ∼ 1/λ.
2i.e., theories where the fundamental matter lives only in a subspace of the original gauge theory.
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field. Following [6] we numerically determine the conductivity tensor as a function of the

frequency and integrate tH(ω) in the whole frequency range (technically we just integrate up

to a cutoff, however the remaining contribution can be made arbitrarily small by improving

the numerics).

We have to deal with a holographic system which couples the modes of interest, due

to the presence of the magnetic field, which breaks parity invariance. Going to a circular

polarization in the transverse plane to the magnetic field we can study the system in a

maximally coupled basis3 which turns out to be simpler, and obtain the Hall and optical

conductivities once the solution in the circular polarization basis is known.

This allows us to calculate the Hall frequency, ωH , by means of another sum rule4

ωH =
1

π
P
∫

∞

−∞

Re tH(ω)dω . (1.3)

The Hall frequency can be understood as the frequency at which the phenomenology due

to the Hall effect dominates over the diffusive processes in a non-ideal fluid. We present

the numerical determination of ωH in figure 5. At low masses of the charge carriers we

observe that the Hall frequency is increasing, meaning that the diffusive processes become

more important than the Hall effect for the medium frequencies of the signal. At a given

mass value (depending on both the magnetic field and the density of charge carriers) the

Hall frequency attains a maximum value, and for larger masses ωH decays with a power of

the mass.

Outline of the paper. In section 2 we introduce some general considerations about the

retarded Green’s function, which will lead to a set of general sum rules. Concretely, we

will focus on sum rules for the conductivity.

In section 3 we investigate the consequences of the conductivity sum rule in the case of

a Dp/D(p+4) intersection. We reason that the satisfaction of the sum rules in these cases

implies a reduction of the plasma frequency. We continue the discussion to more general

brane intersections in section 4.

In section 5 we turn our attention to a sum rule satisfied by the quotient between the

Hall and optic conductivities (the Hall angle), and we use it to estimate the Hall frequency

as defined in the text.

Lastly, in section 6 we write some conclusions and future directions.

2 Sum rules from causal considerations

The retarded correlator

GR(t,x; t′,x′) = −iΘ(t− t′)
〈

[O(t,x),O(t′,x′)]
〉

0
≡ −iΘ(t− t′)ρ(t,x; t′,x′) , (2.1)

3Maximally coupled at the level of the action which leads to a completely decoupled set of equations of

motion.
4Here tH = G̃xy/G̃xx is dimensionless. Thus, this equation for the Hall frequency, which is derived

in (2.19), yields a linear result for ω , in contrast to the case for the plasma frequency, ωp, in (1.1).
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plays an important rôle in linear response theory, since it determines the expectation value

of the operator O in the presence of an infinitesimal source δ

〈O(t,x)〉δ = i

∫

dt′dx′GR(t,x; t′,x′)δ(t′,x′) . (2.2)

In this paper we are interested in the case where the source takes the form of a perturbative

electric field Aν(t
′). The expectation value for the current then takes the form

〈Jµ(t,x)〉A =

∫

dt′dx′Θ(t− t′)
〈

[Jµ(t,x), Jν(t′,x′)]
〉

0
Aν(t′,x′) , (2.3)

thus the Green’s function of interest will be the retarded current current correlator.

2.1 Dispersion relations

The presence of the Heaviside theta function in the definition of the retarded correlator

ensures causality in the effect of the source, avoiding signals propagating into the backward

lightcone. For this reason the correlator naturally entering in linear response theory is the

retarded one, since it guarantees that no signal precedes the perturbation. It also implies

that the Fourier transformed correlator G̃(ω,q) satisfies the Kramers Kronig (dispersion)

relations (see for example [7])

Re G̃∆(ω,q) − G̃∞
∆ = − 1

π
P
∫

∞

−∞

Im G̃∆(µ,q)

ω − µ
dµ , (2.4)

Im G̃∆(ω,q) =
1

π
P
∫

∞

−∞

Re G̃∆(µ,q) − G̃∞
∆

ω − µ
dµ , (2.5)

where P is the Cauchy principal value around the pole at µ = ω.

The Green’s function usually presents divergences in the large frequency limit, and

therefore the results (2.4) and (2.5) may be ill-defined. This can be fixed by subtracting

the divergent behavior in the |ω| → ∞ limit. In general one should choose a scheme

to perform this regularization. One usual choice in holographic contexts is to take off

the zero temperature Green’s function, given by powers and logarithms of the frequency

(G̃∆ = G̃T − G̃T=0). It may be that the exact expression for G̃T=0 is not known, in which

case the comparison should be carried out with a specific scheme, and the interpretation

of the results has to take this scheme into consideration. It turns out that for physical

quantities we can show that there is no scheme dependence.

Therefore, in order to apply (2.4) and (2.5), we have to make sure that we have

subtracted all the divergent contribution to the correlator at large frequencies [1, 8]. We

have marked this in the previous equation by the ∆ subscript.

It may be that although the subtracted function G̃∆ has had all UV divergences re-

moved, a constant piece may still survive (i.e. G̃∆(ω → ∞) 6= 0) [1] and thus the integral

in the Kramers Kronig relation diverges. This constant (real) piece, G̃∞
∆ , which remains in

the UV, corresponds to a contact term given by a δ(t) factor in the two-point correlator

function, and is not strictly acausal. This factor may be obtained by OPE techniques, re-

lating it to the expectation values of local operators [8]. The Kramers Kronig relation then

holds for the fully subtracted Green’s function which has had the contact term removed.

– 4 –



J
H
E
P
0
2
(
2
0
1
1
)
0
1
5

Causality of the Green’s function, as dictated by the Kramers Kronig relation, de-

termines the symmetry properties of the spectral function. In general, the spectral func-

tion of bosonic hermitian operators ρ̃(ω,q) is an odd function of the frequency defined

as ρ̃∆ = −2Im G̃∆, where ρ̃∆ stands for the part of the spectral function that survives

after the subtraction (NB. The imaginary part of the Green’s function will not receive any

contact term contributions, which effect solely the real part).

2.2 Sum rules

It is possible to extract a number of relations between integrals in the whole frequency

regime and some physically relevant quantities. These relations follow from (2.4) and (2.5)

and involve on the one hand an integration over the entire positive and negative frequency

domain, capturing the effects occurring at infinitely small (positive and negative) times

and on the other, they imply a certain behavior over the whole frequency range, including

for null frequency, thus giving information about the response of the system at large times.

Recall that we have already subtracted the large frequency behavior in the integrand

to make certain that these integrals converge. A stricter method would be to introduce a

cutoff frequency, ωΛ, that effectively neglects instantaneous effects in the response of the

system. In fact, in this paper we will perform the integrations numerically, such that this

cutoff frequency appears naturally in the calculation. Nevertheless, the dependence of the

results on the position of the cutoff (once we have subtracted the non-convergent part) gets

suppressed as ωΛ → ∞, and the difference between cutting the integrals off or performing

the full integration becomes negligible.

The information we gain at null frequency (i.e., infinitely large times) has to be in-

terpreted with some care. Here, we will restrict our studies to the probe approximation,

in which we insert a probe in a never-changing background. Physically, neglecting the

backreaction of the probe on the background is only valid at times lower than a specific

timescale, after which the effects of the probe on the system must be taken into account

(i.e., the time at which the transfer of momentum from the NfNc degrees of freedom to

the N2
c degrees of freedom becomes important). Therefore, we should interpret our results

as valid for time periods well beyond when the perturbation is turned on, but not as large

as for the probe approximation to fail.

Thermodynamic sum rule. Perhaps the simplest sum rule we may obtain from the

dispersion relations at zero momentum5 is the value of the retarded correlator at zero

frequency. Inserting ρ̃∆ = −2Im G̃∆ in (2.4) we obtain

Re G̃∆(0, 0) − G̃∞
∆ = − 1

2π
P
∫

∞

−∞

ρ̃∆(ω, 0)

ω
dω , (2.6)

which is a thermodynamic sum rule for the spectral function. This is equation (11) in [2],

with a relative factor of 2π in the definition of the spectral function, and a global sign

coming from the definition of the Green’s function (see also [1]). To obtain this relation

5For the rest of this paper we restrict to the q = 0 case.
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we used only the general definition (2.1), so it does not depend on any details of the model

under consideration.

In [1] certain sum rules for the spectral density in hot gauge theories were derived.

Specifically, for the N = 4 SYM at infinite ’t Hooft coupling we have the following sum

rules involving the xy, xy graviton correlator (following our conventions, which differ from

the ones in [1] by a factor of 2 in the definition of the spectral function)

Re G̃xy,xy
∆ (0, 0) − G̃∞

∆ =
1

π

∫

∞

0

dω

ω
ρ̃xy,xy
∆ (ω) , (2.7)

where Re G̃xy,xy
∆ (0, 0) = P is the pressure (from hydrodynamics, see [9]) and G̃∞

∆ = 11
5 P is

a constant value that survives at infinitely large frequencies [1]. Subtracting and using the

conformal equation of state, the l.h.s. in (2.7) is −2
5ǫ, where ǫ is the energy density.

In [2] a sum rule was obtained for the R-current correlator at vanishing momentum in

N = 4 SYM at infinite ’t Hooft coupling

Re G̃R-charge
∆ (0) − G̃∞

∆ =
1

π

∫

∞

0

ρ̃R-charge
∆ (ω)

ω
dω = 0 , (2.8)

where G̃∞
∆ = 0 and Re G̃R-charge

∆ (0) = 0 is a result dictated by hydrodynamics. Other

examples of such sum rules can be found in [11, 12].

Recently, the authors of [16] generalized these sum rules by studying the constraints

of gravity on the retarded correlator. Our interest in this paper is to use the sum rules

to study the behaviour of transport coefficients, since the systems we study are known to

have a meromorphic retarded Green’s function with causal structure.

Conductivity sum rule. From (2.3), and using Ohm’s law, we can express the AC

conductivity in terms of the subtracted retarded correlator as

G̃∆(ω) = iωσ(ω) . (2.9)

Therefore, the pole structure of the conductivity is basically the same as in the retarded

correlator, and the dispersion relations (2.4) and (2.5) have to hold for σ(ω). There is the

possibility of an additional pole (accompanied by a delta function) at zero frequency in the

conductivity. However, this pole does not affect the satisfaction of the dispersion relations

discussed above. Consistency implies that the cutoff-dependent integrated conductivity

W (ωΛ) ≡ 1

π

∫ ωΛ

−ωΛ

σ(µ) dµ , (2.10)

goes to −G∞
∆ in the limit ωΛ → ∞. To see this, notice that from (2.9) Re G̃R(ω) =

−ωImσ(ω) and Im G̃R(ω) = ωRe σ(ω). Plugging this into (2.4) we obtain

− ωImσ(ω) − G̃∞
∆ = − 1

π
P
∫

∞

−∞

µReσ(µ)

ω − µ
dµ , (2.11)

and from (2.5) for σ

− ωImσ(ω) = −ω
π
P
∫

∞

−∞

Reσ(µ) − σ∞

ω − µ
dµ . (2.12)
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As the imaginary part of the correlator goes to zero at large frequencies, i.e., G∞
∆ is

real, then σ∞ = 0 follows. Assuming now that in the principal value all the limits are

taken at the same rate, we can join the former integrands to obtain6

− G̃∞
∆ = − 1

π
P
∫

∞

−∞

Reσ(µ)

ω − µ
(µ− ω)dµ =

1

π

∫

∞

−∞

Re σ(µ)dµ . (2.13)

Now, as Re G̃R is even in frequencies, the corresponding quantity Imσ will be odd, meaning

that the integrated conductivity (2.10) is real. Therefore

lim
ωΛ→∞

W (ωΛ) = −G̃∞
∆ . (2.14)

The integral over the whole range of frequencies is employed in the analysis of plasmas as

a way to obtain the plasma frequency, giving the energy of the collective excitations in the

plasma, by using the expression [3]

lim
ωΛ→∞

W (ωΛ) = ǫ0 ω
2
p . (2.15)

Because in our case we are defining the conductivity from a subtracted correlator, what we

are calculating is a specific contribution to the plasma frequency (in fact it is a difference

in contributions as we shall discuss shortly). Notice that we are not demonstrating here

that the integral of the conductivity in the frequency domain determines the value of the

plasma frequency. We are using this as a definition of the plasma frequency to calculate it

in a holographic setup, instead.

It seems important at this point to summarize our results. The causal structure of

the conductivity allowed us to write down equation (2.4). For ω = 0 this relation gives

us the difference between the Green’s function at infinite frequency and at zero frequency.

On top of this we use the fact that the Green’s function at zero must vanish so that the

real part of the conductivity does not develop a delta function at the origin. A delta

function in Re[σ(ω)] = πδ(ω) is not a sign of superconductivity, but is a universal property

of systems with translational invariance (see for example [13]). In systems where the

quenched flavors are modelled with probes, the huge mismatch in the number of degrees

of freedom Nc > Nf mimics the presence of fixed scattering centers in the bulk, leading

to a finite DC conductivity. In reality this is a transient effect for times of order Nf/Nc

(see [14]). Of course, in a setup where backreaction of flavor is taken into account, full

translational invariance is recovered, and a delta function should be present. It would be

worth studying this effect, for example, in the recently constructed model in [15]. For us

here, the absence of a delta function is a physical constraint on top of causality. This

definition then gives us a way to calculate not only the difference between the zero and

infinite frequency behaviours, but the absolute value of the Green’s function at infinity.

This itself has a physical interpretation as the plasma frequency. In a metal the plasma

frequency describes the frequency of vibration of electrons about the ions, however in our

6Note that plugging the relation between Re σ and ρ̃∆(ω) in (2.13) we do not recover (2.6) with

Re G̃∆(0) = 0 because the Cauchy principal value to evaluate the pole at ω = 0 has disappeared. In

particular, the r.h.s. of equation (2.6) is insensitive to delta functions.
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system there is clearly nothing analogous to the ions. A possible interpretation of the

plasma frequency may then be given by the rate of pair production by an infinitesimal

electric field which causes pairs of charged particles to be pulled out of the vacuum before

annihilating again. The fact that the plasma frequency is dependent only on the quark

mass and not the baryon density suggests that it’s a vacuum effect and not related to the

excess of charge carriers.

Expression (2.10) relies on the relation (2.9) and the causal structure of the conduc-

tivity (and thus the retarded correlator). See however [16] for a discussion deriving similar

relations from the gravitational point of view. Equation (2.10) can also be used to ob-

tain numerically the weight of the factors multiplying delta functions in the conductivities.

These delta functions can occur in metals not presenting superconducting behavior, but

that are not able to dissipate momentum. In this case, impurities will destroy the delta

function giving rise to a Drude peak. In superconducting systems this is not the case, the

delta functions will still be present in the presence of impurities, but their weight may get

reduced by the presence of the extra scattering centers.

Hall angle sum rule. When turning on a magnetic field the Green’s function of the

transverse vector channel has to be treated as a matrix, since the parity-breaking associated

to the finite magnetic field induces a coupling between the fluctuations along the transverse

directions to it. In this case, the Kramers Kronig relations are written as

G̃H
∆(ω) − G̃∞

∆ =
i

π

∫

∞

−∞

G̃A
∆(µ)

ω − µ
dµ , G̃A

∆(ω) =
i

π

∫

∞

−∞

G̃H
∆(µ) − G̃∞

∆

ω − µ
dµ , (2.16)

where the superindices H,A denote hermitian and antihermitian parts, respectively. In this

case G̃∞
∆ is a constant hermitian matrix.

As we will see later, the presence of a magnetic field in the homogeneous system

induces a form for the Green’s function matrix (notice that now we are not subtraction the

asymptotic behaviour)

G̃ =

(

G̃xx G̃xy

−G̃xy G̃xx

)

. (2.17)

We will focus our interest on a sum rule satisfied by the quotient tH(ω) = G̃xy/G̃xx. Let

us sketch the procedure following [6, 7].

We would like to show that tH is a causal signal. If this is the case then tH cannot

have poles in the upper half plane. Now, the x − y component of the Green’s function

matrix has to be a causal function too, therefore potential acausal poles in tH must come

from zeros of the diagonal component in the upper half plane. However, G̃xx(ω) is a

meromorphic function constrained to satisfy G̃xx(ω)∗ = G̃xx(−ω∗). In this case, complex

variable analysis leads to the conclusion that G̃xx(ω) takes real values only on the imaginary

axis, where it behaves monotonically from G̃xx(0) to G̃xx(i∞) (see [7], chapter XII). As we

will show, Gxx(0) = 0 in the cases of study and at infinite frequency it diverges, therefore

the only pole coming from the zeroes of G̃xx is at the origin and can be avoided by choosing

an appropriate integration contour in the complex plane.
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Now, following [6], consider the Kramers Kronig relation7

ω Im[tH(ω)] =
1

π
P
∫

∞

−∞

ωRe[tH(µ)]

ω − µ
dµ . (2.18)

Defining ωH = limω→∞ ω Im[tH(ω)], in the large ω limit we obtain

ωH =
1

π
P
∫

∞

−∞

Re[tH(µ)]dµ . (2.19)

This constant ωH is interpreted as the Hall frequency in [6] and gives the rate of the preces-

sion of charged particles in the magnetic field (note that with the AC current the charged

particles will only move around a small part of this circle during any given oscillation of the

electric field). Thus the Hall angle together with the Hall frequency can tell us about the

helical motion of a particle in the setup of interest as discussed in more detail below. As

in the case of the plasma frequency, we use the sum rule to define the Hall frequency and

calculate it in a holographic setup; we are not demonstrating that both quantities are the

same. This would have to be checked with an independent calculation. It is also possible

to apply the hydrodynamic sum rule to this quantity, obtaining

Re[tH(0)] =
σxy

σxx

∣

∣

∣

∣

∣

ω=0

= − 1

π
P
∫

∞

−∞

dω

ω
Im[tH(ω)] , (2.20)

where the DC ohmic and Hall conductivities can be calculated analytically in most cases.

We can understand the definition for the Hall angle by relating it to an injected current

in the medium along, say, the direction x

tH(ω) =
G̃xy(ω)

G̃xx(ω)
=
σxy(ω)

σxx(ω)

Ex

Ex
=
jy(ω)

jx(ω)
, (2.21)

where jy is the induced Hall current along the direction y. Fourier transforming back into

time domain we find

jy(t) =

∫

∞

−∞

tH(t− t′)jx(t′)dt′ , (2.22)

with tH(t) the Fourier transformed Hall angle. Therefore, the presence of a magnetic field

forces the electric current to precess in a dynamic process described by the Hall angle. The

hall frequency ωH determines the value of limt→t′ tH(t−t′), hence describing this precession

at very short times, and for a perfect fluid, where diffusive centers are absent, should be

equivalent to the cyclotron frequency [6]. In the case we study in section 5 this is not the

case though, since we consider a probe approximation and the fixed background acts as an

infinitely massive diffusive center.

As mentioned before, tH is analytic in the upper half-plane. The integral will converge

in the case we study later since the real part of tH decays faster than 1/ω at large frequen-

cies.8 However, this will not be true for the imaginary part, given the finiteness of the Hall

angle from figure 5 and the definition of the Hall frequency ωH = limω→∞ ω Im[tH(ω)].

7Since tH = Gxy/Gxx and in the large frequency limit Gxy → 0 and Gxx diverges, then t∞H = 0.
8For this, it is crucial that we do not subtract the large frequency behaviour of the optical conductivity.

– 9 –



J
H
E
P
0
2
(
2
0
1
1
)
0
1
5

3 Conductivity sum rule for Dp/D(p + 4) intersections

The metric and dilaton corresponding to the decoupling limit of a stack of Nc ≫ 1 black

Dp-branes is given in the string frame by [17]

ds2 = H−1/2
(

−fdt2 + d~x2
p

)

+H1/2

(

dr2

f
+ r2dΩ2

8−p

)

, eφ = H
3−p

4 , (3.1)

where f = 1 − (rh/r)
7−p and H = (L/r)7−p. The additional RR form does not play a

rôle in this paper. The matter of the theory transforms in the adjoint representation. By

considering an intersection of the stack of Nc Dp-branes with a stack of Nf ≪ Nc probe

Dq-branes matter transforming in the fundamental representation can be added [18]. It

was shown that, in order to preserve supersymmetry in the extremal case, rh → 0, the

dimensionality of the fundamental branes, q, has to be given by q = {p, p + 2, p + 4}. In

the latter case the probe branes wrap the worldvolume directions of the Dp-branes plus

an S3 contained in the S8−p appearing in (3.1) whilst in the other cases the intersection

must contain a defect in the worldvolume directions of the Dp-branes. Working in a

dimensionless radial coordinate u = rh/r the intersection in the latter case is summarized

in the following table:

t Rp u S3 X5−p

Dp × ×
D(p+ 4) × × × ×

with the dynamics governed by the DBI action

SDBI = −NfTD(p+4)

∫

Mp+4

e−φ
√

− det[g + 2πℓ2sF ] , (3.2)

where TD(p+4) = 1/
(

(2πℓs)
p+4gsℓs

)

is the tension of the brane, g the pull-back of the 10-

dimensional metric to the worldvolume of the probe brane Mp+4, ℓs the string length and

F the field strength of the gauge field living on the probe brane.

The embedding profile of the probe branes can in general be specified by a single scalar

function ψ(u) which is related to one of the angles in the compact X5−p manifold (there

are situations where the embedding must be written in terms of multiple scalar fields but

we here specialize to the more generic cases). This can be specified by decomposing the

metric of the (8 − p)-sphere as

dΩ2
8−p =

dψ2

1 − ψ2
+ ψ2dΩ2

4−p + (1 − ψ2)dΩ2
3 . (3.3)

In this case, the asymptotic behavior of the embedding function near the boundary, u→ 0,

is given by ψ ≈ mq u + cq u
3. The dimensionless constant mq is directly related to the

quark mass (see (3.12)) and cq to the quark bilinear condensate [19].

The system presents two different phases, separated by a first order phase transition

at a critical mass m∗
q [19]. For masses below the critical value a horizon is induced in the

worldvolume of the flavor branes, giving rise to a conducting phase in which the mesons
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become unstable. For masses larger than the critical value the transverse S3 wrapped by

the branes shrinks to zero size above the horizon of the background geometry, and the

system is in an insulator phase, with a stable mesonic bound-state spectrum.

It is possible to introduce a finite baryon density into the description of the field theory

by turning on the temporal component of the U(1) abelian center living on the worldvolume

of the probe branes. On the horizon this component has to satisfy A0(1) = 0, in order

to avoid a singular one-form. From the asymptotic behavior on the UV, A0 ≈ µ − au2,

we identify µ as the chemical potential and a as related to the baryon density. Whenever

a 6= 0, the embedding has to be of the black hole kind, but a phase transition still remains

if the value of the baryon density is low enough [20].

In the present work we are interested in the fluctuations of the U(1) vector field in

the conducting phase. The expression (2.6) is evaluated at null spatial momentum for the

fluctuations, so an SO(p) symmetry is preserved and the p spatial components of the vector

field can be studied by considering just one of them, say δAp(t, u) = exp(−iωt)δαp(u), with

δA the perturbation of the gauge field. We will work in the δαu = 0 gauge. The equation

of motion for the fluctuation is obtained by expanding (3.2) to quadratic order, and is

integrated imposing that it is an ingoing-wave at the horizon of the black hole and fixing

an overall normalization. In the UV it behaves as αp(u ∼ 0) ≈ Ap + Bp u
2 + · · · . An

additional logarithmic term can appear in this expansion. We will see later how to deal

with these.

One can now obtain the two-point function G̃Jp,Jp

(ω, 0) using the standard prescrip-

tion [4] (from now on we will focus on the Jp-Jp correlator, so we will skip this superscript)

G̃(ω) = 2V (u)
Bp

Ap

∣

∣

∣

∣

u→ǫ

, (3.4)

where V (u) is proportional to the wronskian for αp, and can be read from the (∂uδαp)
2

term in the quadratic action. Notice that it captures several constants like NfTD(p+4)
,

(2πℓ2s)
2 or the volume of the S3.

3.1 The D3/D7 system

We first specialize to the D3/D7 brane intersection, corresponding to quenched fundamen-

tal matter added to four dimensional (thermal) N = 4 SYM with a small number of N = 2

hypermultiplets.

In order to evaluate (2.6) we must subtract the T = 0 contribution from the ‘bare’

Green’s function. We subtract the analytic part of the correlator at zero mass and zero

baryon density which can be found in [21]. Evaluating the retarded correlator at large real

frequencies we obtain

G̃S(ω) = −NfNcT
2

4

(

ω

2π T

)2(

2γE + log

(

ε2
( |ω|

2π T

)2)

− i π sign(ω)

)

. (3.5)

The ε → 0 limit should also be understood in the previous expression. The logarithmic

divergence is avoided by the use of holographic renormalization. To make this more concise
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Figure 1. Real (left) and imaginary (right) parts of the correlator function for finite mass mq =

1.3266, finite baryon density d̃ = 2 and zero momentum, in units of NcNfT
2/2. The dashed line

marks the value m2
q/3 ≈ 0.58662.

we can Fourier transform (3.5) back into the time-domain, obtaining a correlator

GS(t) =
NfNc

4π2

(

1

2
log(ε2)δ̈(t) + π∂2

t

Θ(t)

t

)

, (3.6)

and we see that the T = 0 contribution is a retarded correlator with a contact term,

which presents the logarithmic divergence. The δ̈(t) contact term could alternatively have

been removed by adding the appropriate counterterm to the DBI action via holographic

renormalization given by [22]

LF = −L
4

4
NfTD7V (S3)(2πℓ2s)

2

∫

M4

√
−hhilhjmFijFlm log(ǫ2)

∣

∣

∣

u→ǫ
, (3.7)

where hµν is the 4-dimensional metric restricted to the u = ǫ slice. The subtraction

of (3.5) is equivalent to the addition of this counterterm. However, the term proportional

to ∂2
t Θ(t)/t cannot be removed with holographic renormalization and is needed to regularize

the spectral function at large frequencies.

Having tamed the divergences, we can investigate the finite temperature correlator as

a function of the frequency in a representative range of masses and baryon densities.9 We

present a typical profile for the retarded correlator in figure 1, and we will refer to this

figure as representative of the whole set of correlators we have studied.

One first thing to notice in figure 1(left) is that Re G̃∆(0) = 0. This is a result

that has been obtained analytically in [23] to be G̃(ω) = iωσDC + O(ω2), just reflecting

the consistency of the numerical calculation of the retarded Green’s function with the

hydrodynamic limit. In the former expression σDC is the conductivity of the system,

which coincides with the macroscopic calculation in [22].

We need now to calculate the value of the retarded correlator in the infinite frequency

limit and check that it coincides with the r.h.s. of (2.6). Studying this for different values

9The dimensionless baryon density d̃ that we specify in the examples is related to the a constant in the

asymptotic expression of the A0 mode by a = πTL2

2πℓ2
s

d̃.
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of the quark mass and baryon density we find that the results are consistent,10 and that

G̃∞
∆ = Re G̃∆(0, 0) +

1

π
P
∫

∞

−∞

Im G̃∆(ω, 0)

ω
dω =

NfNcT
2

6
m2

q =
2NfNc

3λ
M2

q , (3.8)

with Mq = 1
2

√
λTmq, the dimensionful mass [19]. This result, up to a factor 2, is the same

as that obtained in appendix B of [21] for the T = 0 scalar-scalar correlator. In this limit

both the scalar and vector channels are related by supersymmetry.

One could argue now that our subtraction scheme is incomplete, and that we should

have also included the M2
q part in (3.5), which corresponds to a contact term proportional

to δ(t). This would have changed the value of Re G̃∆(0) to a negative value, a fact with

two important consequences. The first one is that the result would have been inconsequent

with the hydrodynamic calculation, since this calculation is insensitive to the existence of

such a contact term. The second consequence is however more crucial. A negative value

of the correlator at zero frequency reflects, via the relation with the conductivity, in a

1/ω pole in the imaginary part of the conductivity. The Kramers Kronig relations tell us

that we should therefore find a delta function at zero frequency in the real part of the

conductivity. This situation, however, cannot be realized within the probe approximation,

since the delta function signals a saturation in the energy absorption of the system, but in

the strict probe approximation limit the background is always able to absorb the energy

pumped by the fields on the probe branes.

Coming back to (3.8), in the mq → 0 limit we recover the R-current result11 given

by equation (2.8). Also, this expression holds independent of the quark condensate or the

baryon density. In particular, this means that the relation does not feel the unstable phases

present in the vicinity of the phase transition, and will still hold if we overheat the system

beyond the critical point, provided we do not reach the temperature at which the first

quasinormal mode becomes tachyonic [19], since then the dispersion relations will not hold

due to the presence of poles in the upper half plane.

We have also checked that the relations (2.4) and (2.5) hold, obtaining numerically

figure 1(left) from 1(right) and vice versa. This can be used as a check of the numerical

calculation, since it means that the signals in the system propagate causally, a fact that

numeric instabilities in the integration of the equation of motion could spoil.

An example of how numerical instabilities do not affect our results to any great extent

is given by figure 2. In this figure we show the absolute value of the integrand in (2.4)

for a given value of the quark mass and baryon density, together with the value of the

integration in the positive frequency axis. Comparing the value of this integral with the

value given by (3.8) we obtain an overwhelming agreement, meaning that although we are

not numerically integrating to infinite frequencies, the vanishing error introduced does not

affect our results or conclusions. This is because the amplitude of the oscillations around

the subtracted T = 0 contribution decays exponentially, as observed in [8, 24]

In figure 2 it is seen that the last plotted bump already presents some small numerical

errors. This error can be decreased with improved numerical methods.

10We found differences between the numerical and analytic values of only O(10−3 − 10−4).
11In this limit the R-current results are obtained by the rescaling NfNc → N2

c .
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Figure 2. Logarithmic plot of the integrand for the sum rule (in units of NfNcT
2/(2π)) as a

function of w = ω/(2πT ) for mq = 1 and d̃ = 0.1. The amplitude of the oscillations decays as

ω2e−k ω. The numbers above the line are the contribution to the integral by each oscillation, adding

up to approximately −π/3, in agreement with the dispersion relation.

Integrated conductivity. The results described above can be expressed in terms of the

sum rule for the conductivity (2.10) by stating that

Wmq = lim
ωΛ→∞

W (ωΛ) = −NfNcT
2

6
m2

q , (3.9)

where we have specified the value of the mass of the fundamental matter. Recalling the

sum rule (2.15) we observe that the effect of introducing massive fundamental matter in the

system is to effectively reduce the plasma frequency. The more massive the fundamental

matter, the bigger reduction we get, though clearly this is a subleading effect in Nf/Nc.

3.2 Dp/D(p+ 4) systems

We will restrict the discussion in the current section to p = {1, 2, 3, 4}, since the back-

ground created by Dp-branes with p ≥ 5 is thermodynamically unstable [25] and we cannot

define the current-current correlator at zero momentum, equation (3.4), for p < 1. These

setups are the holographic duals to p+ 1-dimensional theories, and therefore its interest is

mostly academic in the D4/D8 case (note that we are not introducing compact directions

for the Dp-brane world volume directions). p = 1 and 2 may be used to model some

condensed matter systems.

We have not found in the literature the equivalent to the asymptotic expression (3.5)

for p = {2, 4}, which is needed to define the subtracted Green’s function G̃∆(ω) entering

in the expression for the sum rules. When p = 1 the integration of the vector mode can

be performed analytically in the massless, zero baryon density case, obtaining a solution

satisfying the ingoing-wave condition at the horizon and normalized at the boundary

α1(u) = exp

[

−i 3ω

2π T

∫ u

0

ûdû

1 − û6

]

. (3.10)
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From here it is straightforward to see that the retarded correlator is G̃(ω) ∝ −i 3 ω
2π T . This

is precisely the quantity we should subtract, since it diverges at large frequencies and

corresponds to nothing but a δ̇(t) contact term. It is then clear that, in this case, the

sum rule in the massless, zero baryon density case is zero, since the integrand vanishes

identically. We found the result for the massless sum rule to be independent of the baryon

density.

We do not have an equivalent expression to (3.5) or (3.10) for the D2/D6 and D4/D8

cases. Despite of this, we can evaluate the conductivity sum rule by using experience

learnt from the D1/D5 and D3/D7 systems. This we can do by changing to an alter-

native subtraction scheme, in which we do not only subtract the analytic divergent part

of the correlator at T = 0, but take away the whole Green’s function corresponding to

the massless, zero baryon density case at finite temperature. With this, we are adding

some frequency-dependent structure to the spectral density of G̃∆, originating from the

introduction of an infinite set of quasinormal modes (in the complex plane).

The new subtraction scheme redefines G̃∆(ω) = G̃(ω,mq, d̃, T ) − G̃(ω, 0, 0, T ), as

opposed to the definition given in section 2.1, which assumed also T = 0 in the sub-

tracted piece. Therefore, the conductivity sum rule (2.10) evaluates now to Wmq ,d̃ =

−G̃∞
∆ (mq, d̃)+ G̃∞

∆ (0, 0). However, if the aim is to compare the integrated conductivity for

two different masses, this shift will have no effect and our results are not affected by choos-

ing this subtraction scheme. In the D3/D7 and D1/D5 cases we found that G∞
∆ (0, 0) = 0,

and we will consider that this holds in the following. This seems a reasonable assumption,

since the system has not a natural scale to provide the dimensions for G̃∞
∆ (0, 0).

Performing a scan of the mass and baryon density parameter space, we find that

the large frequency behavior of the integrand in (2.10) again decays exponentially in the

D4/D8 case, whereas in the D1/D5 and D2/D6 systems it decays just with a power

of the frequency (ω−2 and ω−7/3 respectively). However, these systems are more stable

numerically, and we can obtain reliable results at large frequencies. The calculation of the

spectral sum rule can be summarized by the expression

Wmq = −2πT σ0 κpm
2
q , (3.11)

where σ0 = NfNc Np is the DC conductivity at zero mass and zero baryon density, and

the values for Np and κp are given by

p κp Np

1 0.598(3) 1/
√
π λ

2 0.713(2) (9T/160πλ)1/3

3 0.333(1) T/4π

4 1.199(1) λT 3/54π

κp is the parameter we have determined numerically. Notice that the conductivity

has energy dimension δσ = p − 2, whereas the ’t Hooft coupling, λ = Nc g
2
Y M , has energy

dimension δλ = 3 − p in each case. These expressions can be written in terms of the

dimensionful mass [19]

Mq =
rh

2
9−p

7−pπℓ2s

mq , (3.12)
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such that

WMq = −βpNfNc

M2
q

λ
, (3.13)

where β1 = 3κ1/2
1/3, β2 = 5κ2/2

6/5, β3 = 2κ3 and β4 = 3κ4/2
2/3.

4 Conductivity sum rule in intersections with a defect

Up to now we have studied theories where the intersecting dimensions of the Dp/Dq system

were precisely those of the Dp-brane worldvolume, however, it is possible to study similar

setups, where a defect does exist in the intersection. One of the possibilities is the Sakai-

Sugimoto model [26], which has received lots of attention as a holographic model of QCD.

However, it is not clear how a finite quark mass would be added, so we cannot use this

system to find a similar result to (3.11). Evaluating the sum rule in the massless case we

obtain that the integrated conductivity vanishes.

Another candidate system to describe properties of 3 + 1 plasmas is a D4/D6 in-

tersection with one compactified dimension [19]. This intersection is summarized in the

following table

t R3 x4 u S2 X2

D4 × × ×
D6 × × × ×

As in the D3/D7 case, it is possible to add a finite baryon density and perturb the gauge

field to obtain the retarded current-current correlator. We have performed a study calcu-

lating the sum rule for different values of the mass and the baryon density and found that

the integrated conductivity vanished always. This suggest that the presence of a defect

dimension in the theory has a very important effect on the determination of the sum rules.

We studied also the case of a 2 + 1-dimensional theory with one defect, namely the

D3/D5 intersection with a non trivial flux along the defect to stabilize the setup [27]. The

intersection is

t R2 x3 u S2 X3

D3 × × ×
D5 × × × ×

Considering again the current-current correlator and scanning the parameter space of the

theory for several values of the mass and baryon density we find that the integrated con-

ductivity always vanished in contrast to the non-defect theory.

Hence, we find that in flavor models based on intersections at a defect dimension there

is no shift in the plasma frequency due to the presence of fundamental degrees of freedom.

5 The frequency dependent hall conductivity and associated sum rules

In this section we calculate the frequency dependent Hall conductivity and associated sum

rules in the case of the D3/D7-brane intersection.12 In order to find the Hall conductivity

12See [28] for a similar calculation in a setup with a defect.
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in a macroscopic setup one must turn on both an electric and perpendicular magnetic field

and find the current induced in the transverse direction to these external fields. Using

Ohm’s law one may then deduce the conductivity. However, such a setup will in general

only provide the DC hall conductivity. This has been done previously in [29]. Here we are

interested in the frequency dependent (AC) conductivity, for which a microscopic calcula-

tion is needed. The setup is therefore as follows. A probe D7-brane is embedded in a black

D3-brane background and a gauge field of the following form is turned on

A =
At(u)

2πα′
dt+ e−iωtδαx(u)dx+

(

e−iωtδαy(u) +
π2T 2L2

2πα′
B̃ x

)

dy . (5.1)

The gauge field therefore encodes a magnetic field in the z-direction, a baryon density

given by the temporal component of the gauge field and excitations of the gauge field in the

x and y directions. Note that the choice to include only zero momentum modes will simplify

the calculation a great deal as it allows us to decouple scalar and vector fluctuations.

The combination of the magnetic field and the finite baryon density causes a coupling

between the x and y components of δαµ, and thus solving the differential equations be-

comes much more complicated. However, it is possible to chose an appropriate basis for

the gauge field in which we can decouple the equations of motion. This is the basis of

circular polarizations which we label αL(u) and αR(u), standing for left and right circular

polarizations. This change of basis is implemented by

δαx(u) =
δαL(u) + δαR(u)

2
, δαy(u) =

δαL(u) − δαR(u)

2i
. (5.2)

From the usual DBI action, we Legendre transform with respect to the time component

of the gauge field at zeroth order in the fluctuations in order to calculate the embedding

profile for the D7-brane. Such a calculation has been shown in detail numerous times

(see for example [20]). In all of what follows we will be at finite baryon density, as the

Hall conductivity is only present in this case. In the presence of finite baryon density all

embeddings are of black hole type and end with the D7-brane on the black hole horizon.

In order to calculate the fluctuation solutions for the L and R components of the gauge

field, we expand the action to quadratic order in these fields allowing a plane wave ansatz

for the solution. Off-shell there are terms in the action which are quadratic in both the

δαL and δαR fields as well as cross terms which mix the two. However at the level of the

equations of motion, where the embedding solution is put on-shell, this coupling in the

equations vanishes (i.e. the coupling terms in the fluctuation e.o.m. vanish if we plug the

solution of the embedding profile). In fact the coupling at the level of the action becomes

pure and the L component equation of motion involves only the R fluctuation and vice

versa.

Having uncoupled the equations of motion we can calculate the Green’s function with a

numerical integration, by specifying the incoming wave boundary conditions at the horizon

and solving out to the UV where we read off the asymptotic behaviour. However, although

the fluctuations decouple in the equations of motion, they couple exactly (there are no

non-coupled terms) in the on-shell action. The Green’s function, as a matrix in the space
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of left and right circular polarizations, is therefore exactly off-diagonal. The UV behaviour

of the solutions is of the form

δαL,R(u)|u→0 = aL,R + bL,Ru
2 . (5.3)

By studying the UV behaviour of the action therefore one can determine the exact form

of the Green’s function matrix, which is given by
(

G̃LL G̃LR

G̃RL G̃RR

)

∼
(

0 bL

aL
bR

aR
0

)

. (5.4)

We can study the matrix of Green’s functions in the original (x, y) basis by transforming

the matrix in the (L,R) basis, which is calculated from the numerical calculation. The

(x, y) Green’s function matrix is then given by
(

G̃xx G̃xy

G̃yx G̃yy

)

=
1

4

(

G̃RL + G̃LR i(G̃LR − G̃RL)

−i(G̃LR − G̃RL) G̃RL + G̃LR

)

. (5.5)

This defines the bare green’s function, and so in order to study the Kramers Kronig relations

we must subtract the large ω divergent behavior as discussed in the previous sections.

Notice that, naturally, G̃xx = G̃yy and G̃xy = −G̃yx.

The equations of motion for δαR and δαL
13 are equal up to a sign change of B̃, as

expected, and thus the above Green’s function is governed by a single equation, where

we must chose the appropriate sign of B̃ to perform the calculation. From the Green’s

function the conductivity follows simply and thus we are left with the final expression for

the complex hall conductivity

σxy =
1

4ω

(

bL
aL

− bR
aR

)

. (5.6)

Note that the large ω divergence cancels in this expression and thus the large ω subtraction

is unnecessary. This we will find not to be true for σxx. We can write the Hall conductivity

alternatively as

σxy =
1

4uω

(

δα′
L(u,B, d̃)

δαL(u,B, d̃)
− δα′

L(u,−B, d̃)
δαL(u,−B, d̃)

)
∣

∣

∣

∣

u→0

, (5.7)

where the primes are derivatives with respect to u. There are some immediate points to

note about the calculation and the preliminary results. As explained in previous sections,

the Green’s functions should satisfy a Kramers Kronig relation. This is both a good check of

our definitions and of the numerics of our computation. We have performed this comparison

and found perfect agreement between the numeric calculation of the real (imaginary) part

of the correlator and the result obtained via Kramers Kronig relations from the imaginary

(real) part.

The DC limit of the above expression gives

σxx =
NfNcT

4π

√

(1 − ψ(1)2)3

1 + B̃2
+

d̃2

(1 + B̃2)2
, σxy =

NfNcT

4π

B̃ d̃

1 + B̃2
, (5.8)

13Details of the equations of motion can be found in equation (A.2) in [30] .
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Figure 3. (Left) Real part of the regularized Green’s function for fixed mass mq = 0.297, zero

baryon density and increasing magnetic field B̃ = 0 (blue), B̃ = 2 (red) and B̃ = 5 (yellow).

(Right) Real part of the regularized Green’s function for fixed magnetic field B̃ = 5, zero baryon

density and increasing angle of incidence of the embedding profile in the black hole, corresponding

to masses mq = 0.297 (yellow) and mq = 0.256 (green). Note that the values of ψ0 are 0.72 and 0.9

respectively. For the larger mass, smaller ψ0, the Zeeman effect is hidden by the broader peaks in

the spectral function.

which was previously obtained in [30] and matches the macroscopic calculation in [29]. We

have found that there is again a perfect fit. It should be noted that the ψ independence

in the DC Hall conductivity, explicit in the analytic result, is mirrored in the numerical

solution. This is another very good check that both the conventions for defining the Green’s

function and the numerics themselves are correct.

In figure 3 we plot the real part of the x − x Green’s function for specific values of

the magnetic field, baryon number density and quark mass as a function of the frequency.

There is a clear feature appearing in these plots which is not present in the case of zero

baryon density and/or zero magnetic field. This is the appearance of double peaks, which

are clearly almost coincident, and the distance apart of which is related to the size of

B̃ and d̃. We can study the exact position of these peaks by studying the poles in the

spectral function in the complex frequency plane, and see clearly the appearance of two

peaks, emerging from a single peak for B̃ = 0 or d̃ = 0. This effect of the splitting of a

single quasinormal mode into two is the finite temperature analogue of the Zeeman effect.

The breaking of parity symmetry in our system by the magnetic field causes a splitting in

parity pairs of the quasinormal spectrum. This splitting can be seen explicitly in [31, 32].

Having studied the spectral function itself we can now look at ‘global’ properties of

the Green’s functions, defined through sum rules. The first quantity to discuss is the Hall

angle, given by the ratio of the Hall conductivity to the optical conductivity

tH(ω) = tan θH(ω) =
σxy(ω)

σxx(ω)
. (5.9)

An example of this quantity is plotted in figure 4. It has a number properties which differ

greatly from one material to another. In particular the hall angle tells us about the ratio

of Hall to drift currents under a given electric field (2.21).

From the hall angle we can define the hall frequency, ωH , given by (2.19). In figure 5

we present the numeric results we obtained for the value of the Hall frequency as a function
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Figure 4. Real (blue) and imaginary (red) parts of the Hall angle tH for mq = 1.06, B̃ = 0.5,

d̃ = 0.1.

of the external magnetic field, the baryon density and the mass of the fundamental degrees

of freedom. In the examples we present we can see that, for a given B̃ and d̃, the Hall

frequency has a maximum value for an specific mass mq. After this maximum is reached,

the Hall frequency decays with an inverse power of the quark mass. We couldn’t find any

analytic expression for this power or the position of the maximum.

The strange feature observed in figure 5(d) is reminiscent of a phase transition [31,

35, 36]. We can see that the Hall frequency is sensitive to this change of phase, which

occurs for mq ≈ 0.27 for B̃ = 5 and d̃ = 0.1. It is not a surprise that the Hall frequency

has a jump at the value of the critical mass, since the system goes to a chiral setup when

the magnetic field is increased, and we expect the diffusive processes of the plasma to be

modified.

6 Conclusions and perspectives

It would be interesting to find general sum rules for the retarded correlators in the context

of AdS/CFT. The biggest problem is the evaluation of the asymptotic value G̃∞
∆ . As

pointed out in [8], these values are related to expectation values of local operators via

OPEs in the field theory side. Also, it is expected that the results at weak and strong

coupling differ considerably, as shown in [2] for N = 4 SYM. Comparison with results

from lattice in the study of thermal plasmas will certainly shed light on whether we should

trust holographic estimates of transport coefficients from the spectral functions, although

it is known that the calculation of real time thermal properties on the lattice is extremely

difficult. In [16] the authors are able to find analytic expressions for a number of sum rules

in a gravitational context, and it would be interesting to check whether the calculations

presented here can be merged with their approach.

This tool may also be useful in the AdS/CMT approach, in which the determination of

the properties of the AC conductivity is playing an important rôle. It may also be helpful

for determining the strength of the delta functions appearing at zero frequency, and in this

form give information about the gap frequency of the models under consideration.
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Figure 5. Hall frequency obtained from the Hall angle sum rule as a function of the mass for

d̃ = 0.1 (blue), d̃ = 0.5 (red) and d̃ = 1 (yellow) and B̃ = 0.5 (top-left figure), B̃ = 2 (top-right

figure), B̃ = 5 (bottom-left figure). The Hall frequency tells about the relative strength of the

optical to Hall conductivities in the large frequency domain and thus we see that there is a, for

a fixed B̃ and D̃, a value of the mass for which the relative strengths are closest. Below and

above this value the optical conductivity dominates the transport of charge carriers in the material.

The bottom-right figure corresponds to the blue curve in the bottom-left one. We observe the

multivaluedness signaling the presence of a phase transition for these values of the magnetic field

and charge density.

In this paper we have calculated sum rules related to both the optical and hall con-

ductivities for probe flavors in the plasma of adjoint matter. The results that we obtain

tell us about how fundamental matter affects these transport properties in the quenched

approximation. It is know that the probe limit, which has been assumed throughout, does

not allow one to follow the dynamics of such processes for infinitely long times, as the

effects of the fundamental matter on the adjoint degrees of freedom will eventually become

non-trivial. In the preceding timescale however we are able to calculate finite conductivities

and thus finite plasma frequencies and hall conductivities, both in the DC and AC regimes

(indeed, as shown, the limit of our AC results agree with the previously calculated DC

results which are found through classical D-brane solutions in the absence of fluctuations

and do not rely on the regularization of Green’s functions). The fact that the sum rules

link the well established DC results, to the global properties of the AC results is a strong

indication that these calculations are correct.

We have calculated both the plasma frequency and hall frequency which in such a setup
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tell us about the response of fundamental matter to microscopic AC electric currents in

addition to finite magnetic fields and baryon densities. Although clearly such fine properties

are not accessible to heavy ion experiments, the techniques outlined here allow for similar

analysis in lower dimensional systems which should be comparable to condensed matter

systems. The full analysis of these systems is in progress.

The fact that we are able to extract highly non-trivial properties of strongly coupled

systems via holographic sum rules takes us another step closer to calculating measurable

quantities in real-world systems. The backgrounds discussed in this paper are the simplest

we could study, but the results here can be extended quite easily to more realistic systems

which one may eventually be able to engineer in the laboratory.
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