1,762 research outputs found
Performance of the Child Maintenance and Enforcement Commission: memorandum for the House of Commons Work and Pensions Committee
"This memorandum has been prepared for the House of Commons Work and Pensions Committee to provide an update on the performance of the current statutory child maintenance schemes, following completion of a three year improvement plan. This memorandum also sets out the progress made by the Child Maintenance and Enforcement Commission towards redesigning the child maintenance system in Great Britain, as set out in the Child Maintenance and Other Payments Act 2008" - clause 1.
Interaction Issues in Computer Aided Semantic\ud Annotation of Multimedia
The CASAM project aims to provide a tool for more efficient and effective annotation of multimedia documents through collaboration between a user and a system performing an automated analysis of the media content. A critical part of the project is to develop a user interface which best supports both the user and the system through optimal human-computer interaction. In this paper we discuss the work undertaken, the proposed user interface and underlying interaction issues which drove its development
DNA charge neutralisation by linear polymers I: irreversible binding
We develop a deterministic mathematical model to describe the way
in which polymers bind to DNA by considering the dynamics of the
gap distribution that forms when polymers bind to a DNA plasmid.
In so doing, we generalise existing theory to account for overlaps
and binding cooperativity whereby the polymer binding rate depends
on the size of the overlap The proposed mean-field models are then
solved using a combination of numerical and asymptotic methods. We
find that overlaps lead to higher coverage and hence higher charge
neutralisations, results which are more in line with recent
experimental observations. Our work has applications to gene
therapy where polymers are used to neutralise the negative charges
of the DNA phosphate backbone, allowing condensation prior to
delivery into the nucleus of an abnormal cell
DNA charge neutralisation by linear polymers II: reversible binding
We model the way in which polymers bind to DNA and neutralise
its charged backbone by analysing the dynamics of the distribution
of gaps along the DNA.
We generalise existing theory for irreversible binding to construct
new deterministic models which include polymer removal,
movement along the DNA and allow for binding with overlaps.
We show that reversible binding alters the capacity of the DNA
for polymers by allowing the rearrangement of polymer positions
over a longer timescale than when binding is irreversible.
When the polymers do not overlap, allowing reversible binding
increases the number of polymers adhered and hence the charge that
the DNA can accommodate; in contrast, when overlaps occur, reversible
binding reduces the amount of charge neutralised by the polymers
Species reintroduction and community-level consequences in dynamically simulated ecosystems
Global biodiversity, and its associated ecosystem services, are threatened due to species extinctions. Reintroducing locally extinct species may be a partial solution to this problem. However, the success and possible consequences of any artificial reintroduction will depend on its ecological community, and the reaction of that community to the species' extinction and reintroduction. Mathematical models can offer useful insights by identifying the key features of communities and reintroduced species most likely to result in successful reintroductions. Here we simulated extinctions and reintroductions for a range of theoretical food webs generated using an established bioenergetics model. This allows the probability of successful reintroductions to be quantified as a function of two important ecological factors: the connectance of the food web, and of the time between extinctions and reintroductions. Reintroduction success is measured across an ensemble of 1796 simulated communities, with connnectances of 0.05, 0.15 and 0.3, using three criteria: presence of the reintroduced species in the final community, unchanged species richness in the final community compared to the pre-extinction persistent community and the complete restoration of the community (including both species richness and equilibrium biomass distributions). Although only 12 reintroduced species fail to re-establish according to minimal criteria, the process of extinction and reintroduction frequently has a large effect on the community composition. Increasing time to reintroduction increases both the probability of species loss, and equilibrium biomass change in the community. Proportionally, these community-level impacts occur more frequently when the reintroduced species is a primary producer or top predator. These results indicate that ignoring broader measures of reintroduction success could seriously underestimate the impact of reintroductions on the ecological community. These quantitative results can be compared to empirical literature and may help reveal which factors are most important to the success of reintroductions
Whole-genome sequencing for national surveillance of Shiga toxin–producing Escherichia coli O157
Background. National surveillance of gastrointestinal pathogens, such as Shiga toxin–producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. Methods. We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. Results. Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. Conclusions. WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations
Modes of Random Lasers
In conventional lasers, the optical cavity that confines the photons also
determines essential characteristics of the lasing modes such as wavelength,
emission pattern, ... In random lasers, which do not have mirrors or a
well-defined cavity, light is confined within the gain medium by means of
multiple scattering. The sharp peaks in the emission spectra of semiconductor
powders, first observed in 1999, has therefore lead to an intense debate about
the nature of the lasing modes in these so-called lasers with resonant
feedback. In this paper, we review numerical and theoretical studies aimed at
clarifying the nature of the lasing modes in disordered scattering systems with
gain. We will discuss in particular the link between random laser modes near
threshold (TLM) and the resonances or quasi-bound (QB) states of the passive
system without gain. For random lasers in the localized regime, QB states and
threshold lasing modes were found to be nearly identical within the scattering
medium. These studies were later extended to the case of more lossy systems
such as random systems in the diffusive regime where differences between
quasi-bound states and lasing modes were measured. Very recently, a theory able
to treat lasers with arbitrarily complex and open cavities such as random
lasers established that the TLM are better described in terms of the so-called
constant-flux states.Comment: Review paper submitted to Advances in Optics and Photonic
- …
