78 research outputs found
Drought as a possible contributor to the Visigothic Kingdom crisis and Islamic expansion in the Iberian Peninsula
The Muslim expansion in the Mediterranean basin was one the most relevant and rapid cultural changes in human history. This expansion reached the Iberian Peninsula with the replacement of the Visigothic Kingdom by the Muslim Umayyad Caliphate and the Muslim Emirate of Córdoba during the 8th century CE. In this study we made a compilation of western Mediterranean pollen records to gain insight about past climate conditions when this expansion took place. The pollen stack results, together with other paleohydrological records, archaeological data and historical sources, indicate that the statistically significant strongest droughts between the mid-5th and mid-10th centuries CE (450–950 CE) occurred at 545–570, 695–725, 755–770 and 900–935 CE, which could have contributed to the instability of the Visigothic and Muslim reigns in the Iberian Peninsula. Our study supports the great sensitivity of the agriculture-based economy and socio-political unrest of Early Medieval kingdoms to climatic variationsMinistry of Science and
Innovation of the Government of Spain, Agencia Estatal de Investigación
/10.13039/501100011033/ and Fondo Europeo de Desarrollo Regional - A
way ofmaking Europe, in particular the grant numbers FJC2020-044215-
IThe grant number Retos
P20_00059The action Proyectos I + D + i del Programa
Operativo FEDER 2018 (grant number A-RNM-336-UGR20Research group RNM-190 from the Junta de
Andalucía (Regional Government of Andalusia)The project SBPLY/21/
180501/000205Scientific Research and
Technology Transfer Projects of the Junta deComunidades de Castilla-La
Mancha (Regional Government of Castilla-La Mancha
Laguna Seca sediments reveal environmental and climate change during the latest Pleistocene and Holocene in Sierra Nevada, southern Iberian Peninsula
This study was supported by the I + D + i projects CGL2013-47038- R, CGL2017-85415-R, PID2019-1049449GB-I00, and PID2021- 125619OB-C21/C22 funded by Ministerio Ciencia e Innovación/Agencia Estatal de Investigación/ 10.13039/501100011033/ and Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa”, I + D + i projects A-RNM-336-UGR20 and P20_00059 of the action “Proyectos I + D + i del Programa Operativo FEDER - Junta de Andalucía - UGR” and the research group RNM-190. This research is part of the project “Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning- AI e-Services University of Granada-Sierra Nevada” (LifeWatch-2019- 10-UGR-01), which has been co-funded by the Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action line. José Carrión was supported by the I + D + I project PID2019-1049449 GB-I00 funded by MCIN/AEI/ 10.13039/501100011033/ and FEDER “Una manera de hacer Europa” and the fellowship 20788/PI/18 of Fundación Séneca. We thank Javier Jaimez for his help with the core drilling in Laguna Seca and Alejandro Navarro and Aurora Baquera for the sediment sampling. ALA acknowledges the predoctoral fellowship BES- 2018-084293 provide by the MCIN/ AEI/ 10.13039/5011000110 33/. CLB acknowledges the European Union for her Marie Sklodowska-Curie grant agreement number 892487 under Horizon 2020 funds. JC acknowledges the Ministerio de Ciencia e Innovación of the Spanish Government for the grant number FJC2020-044215-I of the Juan de la Cierva Formación postdoctoral program.Sedimentation in most glacial lakes and wetlands in the Sierra Nevada (southern Iberian Peninsula) began after the last deglaciation and since the Younger Dryas (YD)-Early Holocene (EH) transition. Therefore, until now, studies on older sedimentary records were lacking in this alpine area, which limits the paleoenvironmental and paleoclimatic information to the Holocene. In this study, we studied palynomorphs from the alpine record from Laguna Seca (LS), the longest and oldest (∼18,000 cal yr BP = 18 kyr) sedimentary record in the Sierra Nevada to investigate the response of forests and lake environments in the western Mediterranean area to climate changes and human impact during the latest Pleistocene and Holocene. The deepest lake conditions occurred during the last deglaciation, indicated by the occurrence of Pediastrum algae, which showed highest abundances during the Heinrich Stadial 1 (HS1) and Bølling-Allerød (B-A) transition. Xerophyte herbs such as Artemisia, Ephedra, and Amaranthaceae were highest during the late B-A and YD indicating regional aridity. Poaceae (grasses) were maxima in the B-A and EH, probably indicating expansion in the barren areas after deglaciation. Maximum in temperature and humidity during the EH and cooling and aridification in the Middle (MH) and Late Holocene (LH) are indicated by the changes in the abundance of deciduous Quercus and Pinus forest species. Botryococcus algae increased during the Early Holocene, while the rest of the algae almost vanished, which could indicate that the lake became very productive but shallower until 8.2 kyr. The lake level lowered and became seasonal in the Middle-Late Holocene transition, coinciding with the regional climate aridification. Microcharcoal analysis done on the palynological preparations agrees with the vegetation changes, showing maxima in the EH and MH, related with the maximum in regional forest occurrence, and a decrease in the LH when the Mediterranean vegetation, and thus fuel availability, diminished. This record shows evidence of anthropogenic impact in the last centuries by cultivation, reforestation, cattle grazing, enhanced erosion and eutrophication.I + D + i projects CGL2013-47038- R, CGL2017-85415-R, PID2019-1049449GB-I00, and PID2021- 125619OB-C21/C22 funded by Ministerio Ciencia e Innovación/Agencia Estatal de Investigación/ 10.13039/501100011033/ and Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa”I + D + i projects A-RNM-336-UGR20 and P20_00059 of the action “Proyectos I + D + i del Programa Operativo FEDER - Junta de Andalucía - UGR” and the research group RNM-190Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action lineI + D + I project PID2019-1049449 GB-I00 funded by MCIN/AEI/ 10.13039/501100011033/ and FEDER “Una manera de hacer Europa” and the fellowship 20788/PI/18 of Fundación SénecaPredoctoral fellowship BES- 2018-084293 provide by the MCIN/ AEI/ 10.13039/5011000110 33/European Union for her Marie Sklodowska-Curie grant agreement number 892487 under Horizon 2020 fundsMinisterio de Ciencia e Innovación of the Spanish Government for the grant number FJC2020-044215-I of the Juan de la Cierva Formación postdoctoral progra
Evidences of the Blake and Iceland Basin magnetic excursions in southeastern Iberia and chronological implications for the Padul sedimentary record
Acknowledgments
This study was supported by the project B-RNM-144-UGR18 and ARNM-
336-UGR20 of the action “Proyectos I + D + i del Programa
Operativo FEDER 2018 - Junta de Andalucía-UGR”, the projects
CGL2013-47038-R and CGL2017-85415-R, of the “Ministerio de Economía
y Competitividad of Spain and Fondo Europeo de Desarrollo
Regional FEDER”, and the research group RNM-190 (Junta de Andalucía),
and the projects P18-RT-871 and Retos P20_00059 of Junta de
Andalucia. A.G.-A. was also supported by a Ram´on y Cajal Fellowship
RYC-2015-18966 of the Spanish Government (Ministerio de Economía y
Competividad). A.L.-A PhD is funded by BES-2018-084293 (Ministerio
de Economía y Competividad). We thank the Paleomagnetic Laboratory
CCiTUB-Geo3Bcn CSIC for the support on paleomagnetic analysis. LV
and EB thank the Geomodels Research Institute (UB). We are very
grateful to two anonymous reviewers and to the editor Christian Zeeden.The Padul-15-05 sediment core provides an exceptional perspective of the paleoenvironmental and climate change in the Western Mediterranean region for the last ca. 200 kyr. However, even though a robust chronology mainly relying on radiometric dating is available for the last 50 ka, the chronology for the older sediments is not yet fully resolved. Ages for the bottom part of the core (>21 m) were previously inferred from amino-acid racemization dating and sediment accumulation rates. In this work, we provide a more accurate chronology for the older part (>100 kyr) of the Padul-15-05 sediment core record based on the recognition of past Earth's magnetic excursions. We identify an interval prone of reversed polarity samples close to MIS-5e/5 d transition that we correlate to the Blake geomagnetic excursion (116.5 kyr–112 kyr). In addition, we identify an interval of low inclinations and two reversed samples that we interpret as the Iceland Basin geomagnetic excursion (192.7 kyr–187.7 kyr: wide scenario of VGP <40°). Our new results, which include IRM acquisition curves that contribute to understand the magnetic mineralogy, enhances the robustness of the age model for the Padul-15-05 sedimentary sequence by adding an independent age dataset with new accurate tie-points. Our refined age control together with the available paleoenvironmental and paleoclimate multiproxy data provide insightful information to unveil the response of the western Mediterranean environments to regional environmental and climate change.Project B-RNM-144-UGR18 and ARNM-
336-UGR20 of the action “Proyectos I + D + i del Programa
Operativo FEDER 2018 - Junta de Andalucía-UGR”Projects
CGL2013-47038-R and CGL2017-85415-R, of the “Ministerio de Economía
y Competitividad of Spain and Fondo Europeo de Desarrollo
Regional FEDER”Research group RNM-190 (Junta de Andalucía)Projects P18-RT-871 and Retos P20_00059 of Junta de
AndaluciaRamón y Cajal Fellowship
RYC-2015-18966 of the Spanish Government (Ministerio de Economía y
Competividad)Funded by BES-2018-084293 (Ministerio
de Economía y Competividad
Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region
The Last Glacial Termination is marked by changing environmental conditions affected by abrupt and rapid climate oscillations, such as Heinrich Stadial 1 (HS1), which is characterized by extremely low sea surface temperatures (SST) and significant changes in northern hemisphere terrestrial landscape (e.g., vegetation) and human dispersion. Previous studies show that overall cold/dry conditions occurred during HS1, but the lack of high-resolution records precludes whether climate was stable or instead characterized by instability. A high-resolution paleoclimatic record from the Padul wetland (southern Iberian Peninsula), supported by a high-resolution chronology and contrasted with other records from southern Europe and the Mediterranean region, shows 1) that the age boundaries of HS1 in this area occurred at similar to 18.0 kyr BP (median age = 17,970 cal yr BP; mean age = 18,030 +/- 330 cal yr BP) and similar to 15.2 kyr BP (median age = 15,210 cal yr BP; mean age = 15,200 +/- 420 cal yr BP) and 2) that climate during HS1 was non-stationary and centennial-scale variability in moisture is superimposed on this overall cold climatic period. In this study, we improve the pollen sampling resolution with respect to previous studies on the same Padul-15-05 sedimentary core and suggest a novel subdivision of HS1 in 7 sub-phases, including: i) 3 sub-phases (a.1-a.3) during an arid early phase (HS1a; similar to 18.4-17.2 kyr BP), ii) a relatively humid middle phase (HS1b; similar to 17.2-16.9 kyr BP), and iii) 3 sub-phases (c.1-c.3) during an arid late phase (HS1c; similar to 16.9-15.7 kyr BP). This climatic subdivision is regionally supported by SST oscillations from the Mediterranean Sea, suggesting a strong land-sea coupling. A cyclostratigraphic analysis of pollen data between 20 and 11 kyr BP indicates that the climate variability and the proposed subdivisions characterized by similar to 2000 and similar to 800-yr periodicities could be related to solar forcing controlling climate in this area. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe
Past 200 kyr hydroclimate variability in the western Mediterranean and its connection to the African Humid Periods
The Iberian Peninsula is located at the intersection between the subtropical and temperate climate zones and the paleoclimate records from this region are key to elucidate the varying humidity and changing dominance of atmospheric circulation patterns in the Mediterranean-North African region in the past. Here we present a quantitative hydroclimate reconstruction for the last ca. 200 kyr from southern Iberian Peninsula based on pollen data from the Padul lake sediment record. We use the newly developed Scale-normalized Significant Zero crossing (SnSiZer) method to detect not only the statistically significant precipitation changes but also to estimate the relative magnitude of these oscillations in our reconstruction. We identify six statistically significant main humid phases, termed West Mediterranean Humid Periods (WMHP 1-6). These humid periods correlate with other West/Central Mediterranean paleohydrological records, suggesting that similar climatic factors affected different areas of the Mediterranean. In addition, the WMPHs are roughly coeval with the African Humid Periods (AHPs) during high seasonality, suggesting the same North Atlantic ocean-atmospheric dynamics and orbital forcing as main drivers of both areas. In contrast, during low seasonality periods, the West Mediterranean still appears to be affected by the westerlies and the local Mediterranean rainfall systems with moderate-to-high precipitation, whereas West Africa was characterized by droughts.Peer reviewe
Post-glacial evolution of alpine environments in the western Mediterranean region : The Laguna Seca record
In an effort to understand how alpine environments from the western Mediterranean region responded to climate variations since the last glacial-interglacial transition, a detailed chronological control and sedimentological analysis, supported by magnetic susceptibility, total organic carbon and C/N data, were carried out on the sedimentary record of Laguna Seca (LS). This is a latitudinal and altitudinally (2259 masl) key alpine wetland site located in the easternmost area of the Sierra Nevada, southern Iberian Peninsula, where sediments accumulated during Heinrich Stadial 1, Bolling-Allerod (B-A) and the Younger Dryas (YD) previously unrecorded in alpine Sierra Nevada. Climate controlled sedimentation in LS and three coarse-grained and one fine-grained facies association are differentiated, which help us decipher the paleoenvironmental evolution of LS: (1) subaerial cohesionless debris flows during a paraglacial stage; (2) till or nival diamicton during a small glacier/nivation hollow stage; (3) massive mudstone by suspension settling of clays into standing water during a lacustrine stage; and (4) frost-shattering breccia deposited inside the lacustrine stage, probably during the YD, and linked to a periglacial substage. The development of a previously existing small glacial cirque during the Last Glacial Maximum (LGM) in the LS basin at an elevation between 2500 and 2300 m could be supported by the important availability of slope sediments glacially-conditioned such as debris flows, reworked by paraglacial slope processes during the first deglaciation stages, confirming previous studies of landforms in the catchment area and the LGM-Equilibrium Line Altitude estimation above 2400 masl in Sierra Nevada. Mean sediment accumulation rates in the LS sedimentary units (4.21 and 0.28 mm/yr during the paraglacial small glacier/nivation stage and the lacustrine stage, respectively) confirm that geomorphic activity accelerated just after glaciers retreated due to a slope adjustment and high availability of glacially conditioned sediments. An abrupt change in paleoenvironmental and paleoclimatic conditions occurred in LS at ~ 15.7 cal kyr BP. This change was probably due to an increase in temperature and precipitation in the western Mediterranean region during the B-A. At LS, this resulted in significant ice-melt, forming a deep-water lake in LS with important organic matter contribution until the end of the Early Holocene (except in the YD when the lake level probably dropped), but elsewhere a general glacier recession in the Sierra Nevada and an expansion of the Mediterranean forest in the southern Iberian Peninsula. Finally, the general long-term aridification that occurred during the Middle Holocene until the present in the western Mediterranean region triggered an important environmental change transforming LS into an ephemeral wetland with an increase in aquatic productivity.Peer reviewe
The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa
Comprehending the effects of climate variability and disturbance on forested ecosystems is paramount to successfully managing forest environments under future climate scenarios (e.g., global warming, aridi-fication increase). Changes in fossil pollen abundance in sedimentary archives record past vegetation dynamics at regional scales, mainly related to climate changes and, in the last few millennia, to human impact. Pollen records can thus provide long databases with information on how the environment reacted to climate change before the historical record. In this study, we synthesized fossil pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused on Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Cedrus pollen has received little attention in the Iberian Peninsula palynological records, for it occurs in low concentrations and has an African source, and thus this article explores the potential to reconstruct its past history and climate. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African (Moroccan) Cedrus pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. As observed in the Sierra Nevada synthetic record, the increasing trend of Cedrus pollen during the Middle and Late Holocene closely correlates with decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Middle Atlas and Rif Mountains) as well as lower summer evaporation, benefiting the growth of this cool-adapted montane tree species while increasing available moisture during the summer, which is critical for this water-demanding species. Millennial-scale variability also characterizes the Sierra Nevada Cedrus synthetic pollen record. Cedrus abundance oscillations co-vary with well-known millennial-scale climatic variability that controlled cedar abundance and altitudinal distribution in montane areas of N Africa. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe
Climatic control on the Holocene hydrology of a playa-lake system in the western Mediterranean
Evaporitic lakes such as playa-lakes are characteristic of many arid regions and are unique environments with respect to fauna and flora, while being very vulnerable to climate and environmental fluctuations and threatened by the current global change scenario. Water balance oscillations in these systems can trigger the precipitation or dissolution of different evaporitic minerals, negatively impacting local biodiversity and economic activities. Here, we study the sedimentary record of a small saline pond from a playa-lake complex in southwestern Iberia in order to reconstruct the paleohydrological evolution of this area and assess potential anthropogenic disturbances. The different proxies studied in the-11.9 ky old sedimentary record of the Laguna de la Ballestera suggest that the greatest lake extension and the highest water levels occurred during the Early Holocene, pointing to the wettest period of the record. Climate transitioned towards more arid conditions during the Middle Holocene, and even more dramatically during the Late Holocene. In this last stage the wetland surface and the water level largely diminished and gypsum precipitation gradually increased pointing towards a negative precipitation/ evapotranspiration balance and lowest water levels. Summer desiccation likely occurred under this scenario, especially after-1.0-0.9 cal ky BP coeval with the Medieval Climate Anomaly, when gypsum content started to rise abruptly. However, this significant gypsum precipitation was only associated with a massive drop in the siliciclastic content and scarce carbonates (dolomite and calcite) during the last-400 years. This evidence suggests a shift from a (semi) permanent to a temporal/seasonal hydrological regime. The environmental evolution of this wetland responded to the general climatic evolution of the western Mediterranean during the Holocene, being mostly controlled by changes in insolation. Our data also show that the environmental response of the studied wetland to natural climate variations was only significantly disturbed by human activities since the 20th century, especially in the second half of the century, deduced by abrupt fluctuations in the siliciclastic, gypsum and organic content in the sediments, as well as by the enhanced sedimentary accumulation rates, probably as a response to changes in the hydroperiod of the lake and in the catchment land use.Peer reviewe
Iberian Neanderthals in forests and savannahs
This article aims to delve into the reality of glacial refuges of forests and tree species (including conifers, mesothermophilous angiosperms and xerothermic scrub) during the cold dry phases of the Iberian Pleistocene in which there is evidence of occupation of Middle Palaeolithic people. The research framework focuses on the eastern sector of the Iberian Peninsula due to the physiographic, palaeobotanical and archaeological peculiarities, substantiated by recent studies. We contend that some Neanderthal occupations developed in the context of high geobiological complexity, high biological diversity and highly structured forest ecosystems. We highlight the importance of glacial refuges as local anomalies that, however, would be contingent on vegetational development, and on the survival of Palaeolithic groups in areas with a broad diversity of natural resources.Peer reviewe
Iberian Neanderthals in forests and savannahs
This article aims to delve into the reality of glacial refuges of forests and tree species (including conifers, mesothermophilous angiosperms and xerothermic scrub) during the cold dry phases of the Iberian
Pleistocene in which there is evidence of occupation of Middle Palaeolithic people. The research framework focuses on the eastern sector of the Iberian Peninsula due to the physiographic, palaeobotanical and archaeological peculiarities, substantiated by recent studies. We contend that some Neanderthal occupations developed in the context of high geobiological complexity, high biological diversity and highly structured forest ecosystems. We highlight the importance of glacial refuges as local anomalies that, however, would be contingent on vegetational development, and on the survival of Palaeolithic groups in areas with a broad diversity of natural resources.The development of this work was supported by Projects CGL2015‐69160‐R, CGL‐BOS2015‐68604‐P, funded by FEDER/Ministry of Science and Innovation – Agencia Estatal de Investigación, Project (PID2019‐1049449GB‐I00), funded by FEDER/Ministry of Science and Innovation – Agencia Estatal de Investigación and Fundación Séneca (grant no. 20788/PI/18).
A.B.M.A.'s work has been partially funded by the Spanish Science Ministry (HAR2017‐84997‐P) and the ERC‐CoG project (SUBSILIENCE Ref 818299
- …