33 research outputs found
Dogs catch human yawns
This study is the first to demonstrate that human yawns are possibly contagious to domestic dogs (Canis familiaris). Twenty-nine dogs observed a human yawning or making control mouth movements. Twenty-one dogs yawned when they observed a human yawning, but control mouth movements did not elicit yawning from any of them. The presence of contagious yawning in dogs suggests that this phenomenon is not specific to primate species and may indicate that dogs possess the capacity for a rudimentary form of empathy. Since yawning is known to modulate the levels of arousal, yawn contagion may help coordinate dog–human interaction and communication. Understanding the mechanism as well as the function of contagious yawning between humans and dogs requires more detailed investigation
Visual motion processing in migraine: enhanced motion after-effects are related to display contrast, visual symptoms, visual triggers and attack frequency
BACKGROUND: Visual after-effects are illusions that occur after prolonged viewing of visual displays. The motion after-effect (MAE), for example, is an illusory impression of motion after viewing moving displays: subsequently, stationary displays appear to drift in the opposite direction. After-effects have been used extensively in basic vision research and in clinical settings, and are enhanced in migraine.
OBJECTIVES: To assess associations between (1) MAE duration and visual symptoms experienced during/between migraine/headache attacks, and (2) visual stimuli reported as migraine/headache triggers.
METHODS: The MAE was elicited after viewing motion for 45 seconds. MAE duration was tested for three test contrast displays (high, medium, low). Participants also completed a headache questionnaire that included migraine/headache triggers.
RESULTS: For each test contrast, the MAE was prolonged in migraine. MAE duration was associated with photophobia; visual triggers (flicker, striped patterns); and migraine or headache frequency.
CONCLUSIONS: Group differences on various visual tasks have been attributed to abnormal cortical processing in migraine, such as hyperexcitability, heightened responsiveness and/or a lack of intra-cortical inhibition. The results are not consistent with hyperexcitability simply from a general lack of inhibition. Alternative multi-stage models are discussed and suggestions for further research are recommended, including visual tests in clinical assessments/clinical trials
Recommended from our members
Embodiment and Multisensory Perception of Synchronicity: Biological Features Modulate Visual and Tactile Multisensory Interaction in Simultaneity Judgements
The concept of embodiment has been used in multiple scenarios, but in cognitive neuroscience it normally refers to the comprehension of the role of one’s own body in the cognition of everyday situations and the processes involved in that perception. Multisensory research is gradually embracing the concept of embodiment, but the focus has mostly been concentrated upon audiovisual integration. In two experiments, we evaluated how the likelihood of a perceived stimulus to be embodied modulates visuotactile interaction in a Simultaneity Judgement task. Experiment 1 compared the perception of two visual stimuli with and without biological attributes (hands and geometrical shapes) moving towards each other, while tactile stimuli were provided on the palm of the participants’ hand. Participants judged whether the meeting point of two periodically-moving visual stimuli was synchronous with the tactile stimulation in their own hands. Results showed that in the hand condition, the Point of Subjective Simultaneity (PSS) was significantly more distant to real synchrony (60 ms after the Stimulus Onset Asynchrony, SOA) than in the geometrical shape condition (45 ms after SOA). In experiment 2, we further explored the impact of biological attributes by comparing performance on two visual biological stimuli (hands and ears), that also vary in their motor and visuotactile properties. Results showed that the PSS was equally distant to real synchrony in both the hands and ears conditions. Overall, findings suggest that embodied visual biological stimuli may modulate visual and tactile multisensory interaction in simultaneity judgements
Social modulation of contagious yawning in wolves
On the basis of observational and experimental evidence, several authors have proposed that contagious yawn is linked to our capacity for empathy, thus presenting a powerful tool to explore the root of empathy in animal evolution. The evidence for the occurrence of contagious yawning and its link to empathy, however, is meagre outside primates and only recently domestic dogs have demonstrated this ability when exposed to human yawns. Since dogs are unusually skilful at reading human communicative behaviors, it is unclear whether this phenomenon is deeply rooted in the evolutionary history of mammals or evolved de novo in dogs as a result of domestication. Here we show that wolves are capable of yawn contagion, suggesting that such ability is a common ancestral trait shared by other mammalian taxa. Furthermore, the strength of the social bond between the model and the subject positively affected the frequency of contagious yawning, suggesting that in wolves the susceptibility of yawn contagion correlates with the level of emotional proximity. Moreover, female wolves showed a shorter reaction time than males when observing yawns of close associates, suggesting that females are more responsive to their social stimuli. These results are consistent with the claim that the mechanism underlying contagious yawning relates to the capacity for empathy and suggests that basic building blocks of empathy might be present in a wide range of species
Familiarity bias and physiological responses in contagious yawning by dogs support link to empathy
In humans, the susceptibility to yawn contagion has been theoretically and empirically related to our capacity for empathy. Because of its relevance to evolutionary biology, this phenomenon has been the focus of recent investigations in nonhuman species. In line with the empathic hypothesis, contagious yawning has been shown to correlate with the level of social attachment in several primate species. Domestic dogs (Canis familiaris) have also shown the ability to yawn contagiously. To date, however, the social modulation of dog contagious yawning has received contradictory support and alternative explanations (i.e., yawn as a mild distress response) could explain positive evidence. The present study aims to replicate contagious yawning in dogs and to discriminate between the two possible mediating mechanisms (i.e., empathic vs. distress related response). Twenty-five dogs observed familiar (dog’s owner) and unfamiliar human models (experimenter) acting out a yawn or control mouth movements. Concurrent physiological measures (heart rate) were additionally monitored for twenty-one of the subjects. The occurrence of yawn contagion was significantly higher during the yawning condition than during the control mouth movements. Furthermore, the dogs yawned more frequently when watching the familiar model than the unfamiliar one demonstrating that the contagiousness of yawning in dogs correlated with the level of emotional proximity. Moreover, subjects’ heart rate did not differ among conditions suggesting that the phenomenon of contagious yawning in dogs is unrelated to stressful events. Our findings are consistent with the view that contagious yawning is modulated by affective components of the behavior and may indicate that rudimentary forms of empathy could be present in domesticated dogs
In Bonobos Yawn Contagion Is Higher among Kin and Friends
In humans, the distribution of yawn contagion is shaped by social closeness with strongly bonded pairs showing higher levels of contagion than weakly bonded pairs. This ethological finding led the authors to hypothesize that the phenomenon of yawn contagion may be the result of certain empathic abilities, although in their most basal form. Here, for the first time, we show the capacity of bonobos (Pan paniscus) to respond to yawns of conspecifics. Bonobos spontaneously yawned more frequently during resting/relaxing compared to social tension periods. The results show that yawn contagion was context independent suggesting that the probability of yawning after observing others\u27 yawns is not affected by the propensity to engage in spontaneous yawns. As it occurs in humans, in bonobos the yawing response mostly occurred within the first minute after the perception of the stimulus. Finally, via a Linear Mixed Model we tested the effect of different variables (e.g., sex, rank, relationship quality) on yawn contagion, which increased when subjects were strongly bonded and when the triggering subject was a female. The importance of social bonding in shaping yawn contagion in bonobos, as it occurs in humans, is consistent with the hypothesis that empathy may play a role in the modulation of this phenomenon in both species. The higher frequency of yawn contagion in presence of a female as a triggering subject supports the hypothesis that adult females not only represent the relational and decisional nucleus of the bonobo society, but also that they play a key role in affecting the emotional states of others
Incidental sounds of locomotion in animal cognition
The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study
Investigating determinants of yawning in the domestic (Equus caballus) and Przewalski (Equus ferus przewalskii) horses
International audienceYawning is rare in herbivores which therefore may be an interesting group to disentangle the potential function(s) of yawning behaviour. Horses provide the opportunity to compare not only animals living in different conditions but also wild versus domestic species. Here, we tested three hypotheses by observing both domestic and Przewalski horses living in semi-natural conditions: (i) that domestic horses may show an elevated rate of yawning as a result of the domestication process (or as a result of life conditions), (ii) that individuals experiencing a higher level of social stress would yawn more than individuals with lower social stress and (iii) that males would yawn more often than females. The study involved 19 Przewalski horses (PHs) and 16 domestic horses (DHs) of different breeds living in large outdoor enclosures. The results showed that there was no difference between the PH and DH in yawning frequency (YF). PHs exhibited much higher levels of social interactions than DHs. There was a positive correlation between yawning frequency and aggressive behaviours in PHs, especially males, supporting the idea that yawning may be associated with more excitatory/stressful social situations. A correlation was found between yawning frequency and affiliative behaviours in DHs, which supports the potential relationship between yawning and social context. Finally, the entire males, but not castrated males, showed much higher levels of yawning than females in both species. The intensity (rather than the valence) of the interaction may be important in triggering yawning, which could therefore be a displacement activity that helps reduce tension
Recommended from our members
Social contagion beyond humans: an investigation on contagious yawning, exploring visual, auditory and tactile perception of a non-biological agent (an android) in primates and humans with intact vision and blind.
The main function of yawning remains disputed. Contagious yawning has been demonstrated within species (e.g. humans; chimpanzees), across species (e.g. humans and dogs) and has been primarily linked to empathy. These communicative signals transferred through body language or facial expressions constitute the basis of social cognition. The current work investigates the nature of contagious yawning in a series of four studies (two with chimpanzees, two with humans - full sighted and blind individuals). The first study used a live presentation to chimpanzees of familiar and unfamiliar humans, portraying a closed mouth, gape and yawn condition. Chimpanzees were more likely to catch yawns from an unknown, rather than familiar human. Yawning triggered soporific behaviour, laying down, gathering leaves, making their beds, only when exposed to visual and auditory yawn stimuli, denoting a form of contagion different from mimicking or imitation behaviour, and here termed Experiential Contagion. The second study explored if the contagious behaviour extended to a non biological unfamiliar object (an android) portraying the same experimental conditions. Chimpanzees caught yawns from the android and displayed the same form of Experiential Contagion. The third study measured (within humans) the implicit contagious response to perception of yawning (observed in videos) using facial electrophysiology and eye tracking. The fourth study (across agents) explored, for the first time, yawn contagion through tactile perception. It found that blind individuals yawned contagiously when touching an inanimate object, the android, that was tactually perceived as yawning. Collectively, findings show contagion can be triggered by visual, auditory and tactile perception, regardless of the biological nature of the perceived stimuli. Robotics and Artificial Intelligence can provide neuroscience with novel opportunities to explore other social interaction behaviours, and warrants future developments of the auditory and tactile biofeedback system, developed during this work, as a tool for blind individuals’ facial recognition and self-portrayal