7 research outputs found

    Dually investigated: the effect of a pressure headcollar on the behaviour, discomfort and stress of trained horses

    Get PDF
    The Dually™ is a control headcollar designed to improve equine behaviour during handling challenges by applying greater pressure than a standard headcollar. Previous research indicated it did not improve compliance in naïve horses but did result in higher Horse Grimace Scale scores (HGS) indicative of discomfort. However, subjects had not been trained to step forward to release the pressure applied by the headcollar. The current study aimed to determine the effect of training on behaviour and physiology of horses wearing the Dually™ headcollar during handling challenges. To this end, subjects received three training sessions prior to completing two handling tests in which they crossed distinct novel obstacles, one wearing a Dually™ with a line attached to the pressure mechanism and one attached to the standard ring as a control. Behaviour was coded by hypothesis blind researchers: time to cross the obstacle and proactive refusal (moving away from the obstacle) were recorded as indicators of compliance and the Horse Grimace Scale was used to measure discomfort caused by each configuration of the device. Infrared thermography of ocular temperature, heart rate variability (RMSSD and low/high frequency ratios (LF/HF)) and salivary cortisol were measured as indicators of arousal. Data from the previous study on Naïve horses was also included to compare responses to the Dually in Naïve and Trained horses. Training resulted in a decrease in RMSSD (p = 0.002) and an increase in LF/HF (p=0.012), compared to rest, indicating arousal. As per the original study, horses did not complete the tests more quickly in the Dually, compared to control (p=0.698). Trained horses from this study tended to be more proactive in the Dually compared to Controls (p=0.066) and significantly more so than Naïve horses from the previous study (p=0.002) suggesting that behaviour becomes less desirable during early Dually training. Yet, stress and HGS indicators were not higher in the Dually compared to Control during testing. Results suggest the Dually has a negative effect on behaviour but not on stress or discomfort during short handling challenges. Further research is warranted to determine the long-term effect of Dually experience on behaviour and welfare

    Cognitive Bias in Ambiguity Judgements:Using Computational Models to Dissect the Effects of Mild Mood Manipulation in Humans

    Get PDF
    Positive and negative moods can be treated as prior expectations over future delivery of rewards and punishments. This provides an inferential foundation for the cognitive (judgement) bias task, now widely-used for assessing affective states in non-human animals. In the task, information about affect is extracted from the optimistic or pessimistic manner in which participants resolve ambiguities in sensory input. Here, we report a novel variant of the task aimed at dissecting the effects of affect manipulations on perceptual and value computations for decision-making under ambiguity in humans. Participants were instructed to judge which way a Gabor patch (250ms presentation) was leaning. If the stimulus leant one way (e.g. left), pressing the REWard key yielded a monetary WIN whilst pressing the SAFE key failed to acquire the WIN. If it leant the other way (e.g. right), pressing the SAFE key avoided a LOSS whilst pressing the REWard key incurred the LOSS. The size (0-100 UK pence) of the offered WIN and threatened LOSS, and the ambiguity of the stimulus (vertical being completely ambiguous) were varied on a trial-by-trial basis, allowing us to investigate how decisions were affected by differing combinations of these factors. Half the subjects performed the task in a 'Pleasantly' decorated room and were given a gift (bag of sweets) prior to starting, whilst the other half were in a bare 'Unpleasant' room and were not given anything. Although these treatments had little effect on self-reported mood, they did lead to differences in decision-making. All subjects were risk averse under ambiguity, consistent with the notion of loss aversion. Analysis using a Bayesian decision model indicated that Unpleasant Room subjects were ('pessimistically') biased towards choosing the SAFE key under ambiguity, but also weighed WINS more heavily than LOSSes compared to Pleasant Room subjects. These apparently contradictory findings may be explained by the influence of affect on different processes underlying decision-making, and the task presented here offers opportunities for further dissecting such processes

    Cognitive biases: dissecting the influence of affect on decision-making under ambiguity inhumans and animals

    No full text
    There have been many battles about how best to formalise the affective states of humans andother animals in ways that can be self-evidently tied to quantifiable behaviours. One recent suggestion isthat positive and negative moods can be treated as prior expectations over the future delivery of rewardsand punishments, and that these priors affect behaviour through the conventional workings of Bayesiandecision theory (Mendl et al., 2010). Amongst other characteristics, this suggestion provides an inferentialfoundation for a task that has become a widely-used method for assessing mood states in animals (Hardinget al., 2004). This so-called ‘cognitive bias’ task extracts information about affect from the optimistic orpessimistic manner in which subjects resolve ambiguities in sensory input. Here, we describe experimentsin humans and rodents aimed at elucidating further aspects of this notion. The human studies assessed theextent to which subjects can incorporate information about explicitly-imposed external loss functions intotheir inference about ambiguous inputs, and the way this incorporation interacts with mood. Subjects foundit hard to integrate these sources of information well, which was unexpected given their apparently admirablecapacities in related circumstances (Whiteley & Sahani, 2008), so we are exploring modifications. Therodent studies sought to examine the interaction between the experimenter-imposed instrumental demandsof the task and inherent Pavlovian effects, such as ineluctable approach and avoidance in the face of theprospect respectively of rewards and punishment (Guitart-Masip et al. 2014). The latter might provide anaccount of the differences between rats and mice that we were surprised to observe
    corecore