894 research outputs found

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Ozone-induced polyamine response in Scots pine

    Get PDF

    Striped instability of a holographic Fermi-like liquid

    Full text link
    We consider a holographic description of a system of strongly-coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes. The black hole embedding represents a Fermi-like liquid. We study the excitations of the Fermi liquid system. Above a critical density which depends on the temperature, the system becomes unstable towards an inhomogeneous modulated phase which is similar to a charge density and spin wave state. The essence of this instability can be effectively described by a Maxwell-axion theory with a background electric field. We also consider the fate of zero sound at non-zero temperature.Comment: 16 pages, 9 figures; v2: added discussion and one figure. Typos correcte

    Chiral primary one-point functions in the D3-D7 defect conformal field theory

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%C.F.K. and D.Y. were supported in part by FNU through grant number 272-08-0329. G.W.S. is supported by NSERC of Canada and by the Villum foundation through their Velux Visiting Professor program

    Gravity duals for defect quivers in the Veneziano limit

    Get PDF
    We construct gravity duals to supersymmetric gauge theories in the presence of unquenched flavor hypermultiplets in the fundamental representation of the gauge group living on the (1+1)-dimensional defect. This configuration is given by the intersection of two sets of D3-branes. Working in the Veneziano limit with large number of colors and flavors we are able to find a closed set of equations describing the dual geometry. We briefly discuss the corresponding solutions for massless flavors as well as in the small flavor limit of massive hypermultiplets. Interestingly, the 1/16-BPS supergravity solutions, preserving two Poincare supercharges, are generically only asymptotically anti de-Sitter and the dilaton does not vary with the holographic radial coordinate. This implies that the classical Type IIB supergravity solutions remain trustworthy descriptions for the gauge theories from the deep IR to the far UV.Peer reviewe

    Fluctuations of a holographic quantum Hall fluid

    Full text link
    We analyze the neutral spectrum of the holographic quantum Hall fluid described by the D2-D8' model. As expected for a quantum Hall state, we find the system to be stable and gapped and that, at least over much of the parameter space, the lowest excitation mode is a magneto-roton. In addition, we find magneto-rotons in higher modes as well. We show that these magneto-rotons are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text clarified particularly in Sec. 5, to appear in JHE

    Quantum information probes of charge fractionalization in large-N gauge theories

    Get PDF
    We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.Peer reviewe

    New results for the SQCD Hilbert series

    Full text link
    We derive new explicit results for the Hilbert series of N=1 supersymmetric QCD with U(N_c) and SU(N_c) color symmetry. We use two methods which have previously been applied to similar computational problems in the analysis of decay of unstable D-branes: expansions using Schur polynomials, and the log-gas approach related to random matrix theory.Comment: 33 pages, 2 figures; v2: references and comments on the 3rd order phase transition added; v3: refs. correcte

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18
    • …
    corecore