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1 Introduction

The gauge/string duality [1–3] is a bona fide paradigm of the holographic principle. It posits
that certain field theories are equivalently described by string theory in asymptotically
anti de-Sitter (AdS) spacetimes. The prototype proposal related type IIB string theory in
AdS5×S5 to the four-dimensional N = 4 super Yang-Mills (SYM) and has been generalized
to more general gauge/gravity dual pairs in various dimensions, by considering different
Dp-branes [4]. The essence of the duality is distilled in the twofold nature of D-branes;
hypersurfaces on which open strings can have their endpoints, as well as solitonic solutions
of supergravity.

Amongst the many visages and developments of the duality, two of them have been of
great significance in order to bring holography much closer to the realistic gauge theories
that appear in nature. The first has to do with the establishment of holographic examples
containing fields that transform in the fundamental representation of the gauge group. An
early attempt describing a field theory with fundamental matter holographically can be
found in [5–7] by considering the conformal N = 2 Sp(2Nc) theory in terms of D3-branes
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near F-theory singularities; AdS5 × S2/Z2 string theory. The second development had to
do with constructing less supersymmetric exemplars, see for instance [8].

The inclusion of flavor degrees of freedom can be obtained by considering additional
(flavor) D-branes in the bulk, such that strings can have one endpoint on the D-branes
carrying the color degrees of freedom and another on the new D-branes that carry flavors [9,
10]. The aforesaid open strings are holographically dual to fields that transform in the
fundamental representation of the gauge group, and we call these fields quarks. In a first
approximation one can consider the number of flavors to be small, which amounts to adding
the flavor branes as probes in the geometry. In the field theory language, this is the so-called
the quenched limit. In that limit, we can safely ignore the dynamical effects due to the
presence of quarks, or equivalently the backreaction of the flavor branes to the near-horizon
supergravity solution. If we consider a theory with a number of color degrees of freedom,
Nc, and a number, Nf , of flavors then the quenched limit corresponds to Nf

Nc
→ 0. There are

many interesting results in this limit, such as meson spectroscopy [11–15], the description
of chiral symmetry breaking [16, 17] or field theories furnishing spatial defects of different
dimensionalities [18, 19]. We refer the interested reader to [20, 21] for more discussion and
a detailed account of some of these developments.

While the probe limit has offered much insight, it is desirable to be able to go beyond
that. There are both theoretical and phenomenological reasons to be after this program.
The quantum effects of the quark fields have consequences on the existence of Seiberg
dualities [22] and conformal points (or conformal windows) in the phase space of the
theory [23]. With an eye towards phenomenology, the color charge screening is, also, due to
the dynamical quark effects. Furthermore, in order to mimic the behavior of quark-gluon
plasma it is desirable to consider geometries with appropriate factors that are dual to
unquenched flavor matter at a finite temperature, see for instance [24, 25] for a related
treatment in the context of the D3-D7 and D3-D5 setups, respectively.

To consider the backreaction of the flavor in the gravity side, one has to consider
the supergravity equations of motion in the presence of sources. These D-brane sources
have Dirac δ-functions with support on the locus of the branes. Solving the supergravity
equations with point sources is challenging, and in order to circumvent these complications
a standard approach has been to consider a continuous distribution of D-branes, such that
no δ-functions appear. This smearing approach was originally developed in [26] in the
context of non-critical holography. The substitution of localized sources with a continuous
distribution is valid in the limit of the large number of flavors, and hence we want both
Nc, Nf to be large, while their ratio, Nf

Nc
, remains fixed to a finite value. This is the so-called

Veneziano limit [27].
The smearing of the D-brane sources has been applied very successfully in various

supergravity backgrounds to account for the flavor backreaction, see [24, 25, 28–37], as well
as the excellent review [38] for a more elaborate discussion on the smearing technique and
more developments in different settings.

There is, however, a price to pay for the above simplification. This is the fact that
the dual gauge theory gets modified. The superposition of differently oriented D-branes is,
essentially, a modification of the R-symmetry. In addition to that, the smeared flavor branes
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are not coincident, which reduces the flavor symmetry from U(Nf ) down to U(1)Nf . Another
important aspect is that the solutions with smeared D-branes, typically possess less amount
of supersymmetry compared to solutions with localized sources. Some supersymmetries
remain which helps not only to find solutions, but they can even be analytic.

Another very interesting direction that has been taken towards more general
gauge/gravity duals is to consider replacing the five-dimensional internal space of the
original AdS5×S5 background geometry by a more general five-dimensional Sasaki-Einstein
manifold. This leads to the description of field theories with reduced amount of supersym-
metry and falls in line with the general efforts of the community to construct and examine
models that resemble much more realistic vector-like gauge theories that appear in nature
than the N = 4 SYM. We will generically denote by M5 the Sasaki-Einstein space. It
is known that in this context we have a duality between type IIB string theory on the
AdS5 ×M5 spacetime and a quiver gauge theory on the boundary [39]. For the readers
who want to get familiar with Sasaki-Einstein manifolds we suggest the review [40].

By a specific choice for the five-dimensional internal manifold M5 = T 1,1, one arrives
at the Klebanov-Witten model [41] which was the first one to be studied. However, one has
derived more general classes of such five-dimensional manifolds which are characterized by
either two (cohomogeneity one) or three indices (cohomogeneity two) and are denoted by
Y p,q [42] and La,b,c [43, 44] respectively. These spaces share a similar feature, namely, they
all possess a base topology that is S2 × S3. Interestingly, the metrics are explicitly known.

The holographic field theory descriptions for the two different aforementioned families
of Sasaki-Einstein manifolds are known. The dual field theory description associated to
the case of the Y p,q manifolds was obtained in [45, 46]. The holographic gauge theory has
also been worked out for the case of the La,b,c manifolds [47–49]. It is worth mentioning,
that both the T 1,1 and Y p,q manifolds can be obtained as special cases of the general La,b,c
spaces. There exists, also, previous work on studying string solutions in the Y p,q and La,b,c
manifolds which can be found in [50]. There special emphasis is given on BPS configurations.
Different supersymmetric D-brane embeddings in the Y p,q models have been studied in [51],
while the authors of [52] focused on supersymmetric probe branes in AdS5×La,b,c. Perhaps
surprising is the fact that except for the four-dimensional N = 4 SYM associated with the
AdS5 × S5 background, none of the other field theories are integrable [53–55].

In this work we combine the directions described above, namely we consider backgrounds
of the general form AdS5 ×M5, withM5 being a general five-dimensional Sasaki-Einstein
manifold. We consider dynamical effects on quarks due to the presence of flavor D3′-branes
in the background. We employ the smearing approach in our studies and we derive the
associated string backgrounds.

The structure of this work is the following: in section 2 we describe our supergravity
setup, derive the non-trivial spin-connection components, and determine the associated
Killing spinors by solving the type IIB supersymmetry variations. In section 3 we discuss the
integration of the system of BPS equations obtained from the supersymmetry analysis. We
are able to reduce the problem to that of the integration of a single second order differential
equation. We discuss its solutions in two separate cases: when the quarks are massless and
when the number of massive quarks is small in comparison to colors. We summarize our
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

color D3 — — — — • • • • • •
flavor D3′ — — • • — — • • • •

Table 1. The supersymmetric D3/D3′ brane setup. In the above notation — stands for a brane
which is extended along that particular direction, while • means that the coordinate is transverse to
that brane.

findings and discuss interesting future directions in section 4. We supplement our work
with two appendices. appendix A contains a discussion on various Sasaki-Einstein spaces
and the associated field theories and finally, in appendix B we provide the explicit metric
functions which are obtained after expanding in the number of flavors.

2 The supergravity setup

For illustrational purposes and to have a better grasp on our setup, we schematically depict
the way that the color and flavor branes are arranged in the ten-dimensional spacetime, see
table 1.

2.1 Unquenching — Ansatz and setup

The Ansatz for the metric is given by

ds2 = h−1/2
[
−(dx0)2 + (dx1)2 + em

(
(dx2)2 + (dx3)2

)]
+ h1/2

(
dr2 + ds2

5

)
,

ds2
5 = e2gds2

KE + e2f (dτ +A)2 ,
(2.1)

and we will work with this general way of expressing the internal manifold. In our Ansatz
the dilaton remains constant, as will be shown in section 2.4. We want to mention that
even if one considers two different warp factors in eq. (2.1) for the defect directions, x2

and x3, the solution of the gravitino variation yields that these have to be equal. This we
checked explicitly and hence there is no loss of generality with our choice for the metric. In
appendix A we discuss the specific choicesM5 = {S5, T 1,1, Y p,q, La,b,c} for the internal part
of the geometry and provide the basic expressions that one can use in the general relations
we derive here.

The above type IIB supergravity background that is depicted schematically by the
array in table 1 contains a closed, self-dual five-form flux in the R-R sector, due to the stack
of the background D3-branes. We can, thus, write

F c(5) = I(r)(1 + ?)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr . (2.2)

We can use the Bianchi identity that flux above obeys, dF c(5) = 0, to determine the relation
of I(r) and the functions that we have used in the metric. We obtain

I(r)h2e−2me4g+f = I , (2.3)
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where in the above I is just a constant that can be related to the number of colors, Nc, via
the flux quantization condition. Explicitly, the relation is given by

I = (2π)4gsα
′2Nc

volM5
, (2.4)

where volM5 denotes the volume of theM5 manifold. We can write the metric given by
eq. (2.1) in the orthonormal frame as

ds2 = GMNdx
MdxN = ηABE

AEB = ηABe
A
Me

B
Ndx

MdxN , (2.5)

with the explicit expressions for the one-form basis being given by:

Eµ = h−1/4dxµ , µ = {0, 1} , (2.6)
Eµ̄ = h−1/4emdxµ̄ , µ̄ = {2, 3} , (2.7)
E4 = h1/4dr , (2.8)
Ea = h1/4egEâ , {a, â} = {5, 6, 7, 8} , (2.9)
E9 = h1/4ef (dτ +A) . (2.10)

Note that the lowercase Latin indices denote the x5, .., x8 directions of the ten-dimensional
target spacetime, while hatted lowercase Latin indices specify the Kähler-Einstein basis. In
other words, we write ds2

KE =
8∑̂

a=5
(Eâ)2. For this choice of basis, the Kähler two-form is

simply given by
J = E5̂ ∧ E6̂ + E7̂ ∧ E8̂ , (2.11)

and is related to A around the fiber, τ , via

dA = 2J (2.12)

Since both the color degrees of freedom and the flavor degrees of freedom are associated
with D3-branes, we have two contributions of the self-dual five-form in the RR-sector. The
first bit comes as a contribution from the background D3-branes and is given by

F c(5) = Ie−4g−fh−5/4
(
E01234 − E56789

)
, (2.13)

and there is another part which will account for the backreaction of the flavor, which has a
non trivial pullback to the worldvolume of the D3’ flavor branes

Cf4 = Q(r)dt ∧ dx1 ∧ dr ∧ (dτ +A) , (2.14)

and it generates a five-form flux via

F f,15 = dCf4 , F f,25 = ?F f,15 ,

F f5 = F f,15 + F f,25 .
(2.15)

We note that F f,25 from the above violates the Bianchi identity. The above expression
eq. (2.15) can be written in the one-form basis, see eqs. (2.6) to (2.10), explicitly as

F f(5) = −2Qe−2gh−1/4
(
E01456 + E01478 − E23569 − E23789

)
, (2.16)
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having suppressed the explicit dependence of Q on r for simplicity. We have also used the
abbreviation EA1A2...An = EA1 ∧ EA2 ∧ . . . ∧ EAn . The five-form of the setup we consider
here is given by the sum of the above

F(5) = F c(5) + F f(5) . (2.17)

We will demand this to be self-dual in the following, but due to the explicit sources in the
background, it will not be closed.

2.2 The action and the energy-momentum tensor

We will now look for supersymmetric solutions, so we will recast the supergravity equations
of motion in a suitable form to accommodate backreacted supersymmetric sources. The
total action of the system is given by:

S = SIIB + Sbranes , (2.18)

where SIIB corresponds to the action of the ten-dimensional type IIB supergravity, see
eq. (2.26), and Sbranes corresponds to the action of the backreacted D3′ flavor branes, given
by the sum of the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) actions. The Nf flavor
branes of our setup act as sources of the RR five-form F5. The D3′ flavor branes couple
naturally to the RR four-form potential C4 through the WZ term of the worldvolume action,
given by:

SWZ = T3

Nf∑∫
M4

Ĉ(4) , (2.19)

where the hat over C(4) denotes its pullback to the worldvolume of the D3′ flavor brane
and T3 is the tension of the D3′ brane (1/T3 = (2π)3gs(α′)3). We will be working in the
smearing approach, valid for large Nf , in which we substitute the discrete distribution
of flavor branes by a continuous distribution with the appropriate normalization. The
smearing approach amounts to perform the substitution:

Nf∑∫
M4

Ĉ(4) =⇒
∫
M10

Ω ∧ C(4) , (2.20)

where Ω is a six-form (the smearing form) with components orthogonal to the worldvolume
of the flavor branes. The coupling of the flavor branes to C(4) induces the violation of the
Bianchi identity for F5, which has now a source proportional to Ω. This modification can
be obtained by solving the equation of motion for the C(4) potential which will give us now:

dF5 = dF f,25 = 2κ2
10T3Ω , (2.21)

where 2κ2
10 = (2π)7g2

s(α′)4. We can solve explicitly for the smearing form Ω and obtain

Ω = 1
T3κ2

10
√
h

(
Q[4e−4gefE235678 + e−2g(f ′ + 2m′)(E234569 + E234789)]

+ e−2gQ′(E234569 + E234789)
)
.

(2.22)
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The DBI action can now be written in terms of the Ω form, via:

SDBI = −T3

∫
d10x

√
−G10

∑
i

|Ω(i)| (2.23)

with |Ω(i)| =
√

1
6!Ω

(i)
ABCDEFΩ(i)

MNPQRSG
AMGBNGCPGDQGERGFS .

With these modifications, the equations of motion for supergravity plus sources are
given by

RAB −
1
2ηABR−

1
2

1
240

(
5FACDEFF CDEF

B − 1
2F

2
(5)

)
− T branes

AB = 0 , (2.24)

where the energy-momentum tensor is given by:

T branes
AB

−2κ2
10T3

= 1
2ηAB

∑
i

|Ω(i)|

−
∑
i

1
|Ω(i)|

1
5!(Ω

(i))ACDEFG(Ω(i))BMNPQR ηCMηDNηEP ηFQηGR ,

(2.25)

2.3 The type IIB supersymmetry variations and Killing spinors

To obtain supersymmetric solutions, we will first determine the Killing spinors, which
amounts to solve the equations obtained from imposing the vanishing of the supersymmetric
variations of dilatino and gravitino. The type IIB theory is a chiral theory, with two spinors
of the same chirality and possesses N = 2 supersymmetry. The bosonic content of the
theory consists of the metric, GMN , the dilaton, Φ, a two-form in the NS-NS sector, B(2),
and a zero-,two-, and four-form in the R-R sector, A(0), A(2), and A(4). The type IIB
supergravity action in the string frame is given by

S = 1
2κ2

10

∫
d10x
√
−G

(
e−2φ

(
R+ 4∂MΦ∂MΦ− 1

12H
2
(3)

)
− 1

2F
2
(1) −

1
12F

2
(3) −

1
480F

2
(5)

)
+ 1

4κ2
10

∫
dA(2) ∧H(3) ∧

(
A(4) + 1

2B(2) ∧A(2)

)
, (2.26)

with

H(3) = dB(2) , F(1) = dA(0) , F(3) = dA(2) + C(0)H(3) , F(5) = dA(4) +H(3) ∧A(2) .

(2.27)
The equations of motion derived from the supergravity action have to be supplemented by
the self-duality condition on the five-form; F(5) = ?F(5). The spinor, ε, that parameterizes
the supersymmetry transformations consists of two Majorana-Weyl spinors and has a
well-defined chirality.

The supersymmetry transformations for the dilatino and the gravitino are given by

δλ =
[

1
2
/∂Φ + 1

4 · 3!
/H(3)τ3 −

eΦ

2
/F (1)(iτ2)− eΦ

4 · 3!
/F (3)τ1

]
ε ,

δψM =
[
∇M + 1

4 · 2!HMNRΓNRτ3 + eΦ

8

(
/F (1)(iτ2) + 1

3!
/F (3)τ1 + 1

2 · 5!
/F (5)(iτ2)

)
ΓM

]
ε ,

(2.28)
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where we have used a shorthand notation /X (M) = ΓM1M2...MNXM1M2...MN
and τi are the

standard Pauli matrices.
For the background we consider here, the type IIB supersymmetry variations read

δλ = 1
2ΓM (∂MΦ) ε ,

δψM =
[
∇M + eΦ

1920FABCDEΓABCDEΓM (iτ2)
]
ε .

(2.29)

In order to analyze the supersymmetry variations and determine the Killing spinors, we
demand that the variations above vanish.

2.4 Equations for the BPS system

Since the covariant derivative appears in the gravitino variation, eq. (2.29), we need to
determine the non-vanishing components of the spin-connection. In order to compute these
non-vanishing spin-connection components, we will use the Cartan structure equation. For
torsion-free theories, it is given by

dEA + ωAB ∧ EB = 0 . (2.30)

A straightforward calculation yields

ωµ4 = −1
4h
−5/4h′Eµ , µ = {0, 1} , (2.31)

ωµ̄4 =
(
−1

4h
−5/4h′ + h−1/4m′

)
Eµ̄ , µ̄ = {2, 3} , (2.32)

ωa4 =
(1

4
h′

h
+ g′

)
h−1/4Ea , a = {5, 6, 7, 8} , (2.33)

ω9
4 =

(1
4
h′

h
+ f ′

)
h−1/4E9 , (2.34)

ω9
a = h−1/4ef−2gJâb̂E

b , {a, b} = {5, 6, 7, 8} , (2.35)
ωab = ωâb̂ − h

−1/4ef−2gJ âb̂E
9 , {a, b} = {5, 6, 7, 8} , (2.36)

where we have used the abbreviation ∂r ≡ ′.
The vanishing of the dilatino variation, δλ = 0, can be readily solved by

Φ = constant . (2.37)

It is worth commenting on this result. In the D3-background solution of type IIB theory,
the dilaton is just a constant. In other backreacted systems based on smearing flavor branes
on the D3-background the dilaton attains a non-trivial profile [24, 25]. In our case, however,
the dilaton remains intact. The associated flux is a new contribution to the five-form and
no new terms in the dilatino variation arise. This is an important result as it implies that
the classical supergravity solution that we obtained is a trustworthy result for any number
of flavors.

We now study the equation coming from the gravitino variation, δψM = 0, and we
consider first the Minkowski components of the equation. In what follows, all indices are flat,

– 8 –
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i.e they are defined in the one-form basis. We start by considering the M = 0 component
and we have{

− 1
8h
−5/4h′Γ04 + iτ2

16
(
Ie−4g−fh−5/4

(
Γ01234 − Γ56789

)
−2Qe−2gh−1/4

(
Γ01456 + Γ01478 − Γ23569 − Γ23789

))
Γ0

}
ε = 0 .

(2.38)

From the ten-dimensional chirality condition in type IIB supergravity on the spinor

Γ0123456789ε = −ε , (2.39)

we obtain that
Γ01234ε = Γ56789ε . (2.40)

In addition to the above, we will impose the projection

Γ0123 (iτ2) ε = ε , (2.41)

which corresponds to placing the stack of (color) D3-branes along the {x0, x1, x2, x3}.
Furthermore, we will impose the Kähler condition

Γ56ε = Γ78ε . (2.42)

Using the above, eq. (2.38) becomes{
− 1

8
h′

h5/4 −
I

8h5/4 e
−4g−f − 2Qe−2gh−1/4(iτ2)

(
Γ0156 + Γ234569

)}
ε = 0 . (2.43)

Some straightforward algebra with the term involving Γ-matrices yields

(iτ2)
(
Γ0156 + Γ234569

)
ε = Γ0156

(
iτ2 − Γ49

)
ε . (2.44)

We impose the following projections

Γ49ε = −(iτ2)ε , Γ015649ε = −ε . (2.45)

Imposing the above, eq. (2.43) becomes

h′ + Ie−4g−f + 4Qe−2gh = 0 . (2.46)

Examining the M = 1 component of the gravitino equation produces the same equation as
eq. (2.46).

Next, we examine the M = 2 (or equivalently M = 3) components of the gravitino
variation. We obtain{

−
(1

8h
−5/4h′ − 1

2m
′
)

Γµ̄4 + iτ2
16
(
Ie−4g−fh−5/4

(
Γ01234 − Γ56789

)
−2Qe−2gh−1/4

(
Γ01456 + Γ01478 − Γ23569 − Γ23789

))
Γµ̄
}
ε = 0 .

(2.47)
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We can use the same projections as before, see eqs. (2.39) to (2.41) and (2.45), and we
arrive at

h′

h
− 4 m′ + I

h
e−4g−f − 4Qe−2g = 0 . (2.48)

Finally, we can use the expression for h′ from eq. (2.46) and obtain

m′ = −2Qe−2g . (2.49)

We proceed to examine the radial component of the gravitino equation. We obtain{
h−1/4∂4 + iτ2

16
(
Ie−4g−fh−5/4

(
Γ01234 − Γ56789

)
−2Qe−2gh−1/4

(
Γ01456 + Γ01478 − Γ23569 − Γ23789

))
Γ4

}
ε = 0 ,

(2.50)

and using the projections written previously we can simplify the above to the following:{
∂4 −

1
8
I
h
e−4g−f − 1

2Qe
−2g
}
ε = 0 . (2.51)

We can use eq. (2.46) and re-write eq. (2.51) as

∂4ε = − h
′

8hε . (2.52)

The above equation has an obvious solution, which is given by

ε = h−1/8η , (2.53)

with η being a spinor that does not depend on the radial coordinate. The final step is to
analyze the equations associated with the internal part of the geometry.

Let us now study the directions along the Kähler-Einstein basis. We consider as an
example the case M = 5 (the M = {6, 7, 8} components lead to the same equation by
symmetry). We obtain{

e−gΓ54
(
D̂5 −A5∂τ

)
+ 1

2e
f−2gΓ9456 −

1
2

(
h′

4h + g′
)
− 1

8
I
h
e−4g−f

}
ε = 0 , (2.54)

where in the above D̂ is the covariant derivative along the Kähler-Einstein basis and A

is the one-form potential, see eq. (2.12). It is easy to see that from the previously used
projections we can derive

Γ9456ε = ε . (2.55)

In order to proceed, we will use the fact that in any Kähler-Einstein space there exists a
covariantly constant spinor which satisfies the following

D̂iε = 3
2Γ56Aiε = −3

2(iτ2)Aiε , (2.56)

with i labeling any of the directions along the Kähler-Einstein basis; i = {5, 6, 7, 8}. In the
basis of one-forms of the Kähler-Einstein space that we are using, the Killing spinor can be
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taken to be independent of the {5, 6, 7, 8} coordinates, and it has only a dependence on the
fiber, τ . Hence, we have:

D̂iε−Ai∂τ ε = −Ai
(
∂τ ε+ 3

2(iτ2)ε
)
, (2.57)

which we can make it vanish with the following dependence of the Killing spinor on the
fiber, τ ,

∂τ ε = −3
2(iτ2)ε = 3

2Γ56ε . (2.58)

From the above, eq. (2.54) becomes

−
(
g′ + h′

4h

)
+ ef−2g − 1

4
I
h
e−4g−f = 0 . (2.59)

We can use the result eq. (2.46) and re-write the above as

g′ = ef−2g +Qe−2g . (2.60)

Finally, we want to consider the fiber, given by M = 9. The gravitino equation in this
direction becomes{

Γ94
(
e−f∂τ − ef−2gΓ56

)
− 1

2

(
h′

4h + f ′
)
− 1

8
I
h
e−4g−f − 1

2Qe
−2g
}
ε = 0 , (2.61)

and by using that
∂τ ε = 3

2Γ56ε , (2.62)

we obtain
3
2e
−f − 2ef−2g − 1

2

(
h′

4h + f ′
)
− 1

8
I
h
e−4g−f − 1

2Qe
−2g = 0 . (2.63)

Finally, we can use eq. (2.46) and we can write the above equation as

3e−f − 2ef−2g − f ′ = 0 . (2.64)

Finally, some straightforward algebra reveals the following relation

I = −h′e4g+f +Qhe2g+f , (2.65)

which can be used with eq. (2.3) to fully specify our setup.

Summary of equations and projections. To summarize, after imposing the vanishing
of the supersymmetry variations, we have obtained the following system of first-order
differential equations:

Φ′ = 0 ,
h′ = −Ie−4g−f + 4Q h e−2g ,

g′ = −Qe−2g + ef−2g ,

f ′ = 3e−f − 2ef−2g ,

m′ ≡ mi = 2Qe−2g , i = {2, 3}

∂4ε = − h
′

8hε .

(2.66)
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where the last equation above determines the radial dependence of the Killing spinor. The
projections we used are:

Γ0123456789ε = −ε ,
Γ0123 (iτ2) ε = ε ,

Γ56ε = Γ78ε ,

Γ49ε = −(iτ2)ε ,
Γ015649ε = −ε .

(2.67)

We note that the first relation in the above is just the chirality condition of the spinors
of type IIB supergravity. The remaining four are the independent porjections of the Killing
spinor. This leads to a 1

16 -BPS solution of type IIB supergravity that preserves two Poincaré
supercharges.

One can immediately see that this BPS system solves the second order equations of
motion, and we can now obtain the energy-momentum tensor associated to the brane, and
the smearing form, which are given by:

Ω = Ω(1) + Ω(2) + Ω(3)

Ω(1) = h−
1
2

1
2π4Qe

f−4gE235678 ,

Ω(2) = h−
1
2

1
8π4

(
−2ef−4gQ+ 3e−f−2gQ− 4e−4gQ2 + e−2gQ′

)
E234569 ,

Ω(3) = h−
1
2

1
8π4

(
−2ef−4gQ+ 3e−f−2gQ− 4e−4gQ2 + e−2gQ′

)
E234789 .

(2.68)

and

T branes
µν = ηµνh

− 1
2
(
−6Qe−f−2g + 8Q2e−4g − 2e−2gQ′

)
, {µ, ν} = {0, 1} ,

T branes
22 = T branes

33 = 0 ,

T branes
44 = −4h−

1
2Qef−4g ,

T branes
ii = h−

1
2
(
2ef−4gQ− 3e−f−2gQ+ 4e−4gQ2 − e−2gQ′

)
, i = {5, 6, 7, 8} ,

T branes
99 = −h−

1
2 4ef−4gQ .

(2.69)

3 Analysis of the equations

In this section we will briefly discuss solutions to the BPS system that we have previously
derived. We want to study profiles Q(r) that are suitable to represent flavor degrees of
freedom. In principle these would be dictated directly by the kappa symmetry if one were to
make contact with microscopic embeddings with which one performs the smearing procedure.
This procedure depends on the internal geometry, and since we aim to be general, we do
not specify Q(r) in great detail in the following.

3.1 Small flavor expansion

First of all, given Q(r), one can directly solve the differential equations eq. (2.66) using
numerical methods; see e.g. [56]. As mentioned above, for this purpose one needs to specify
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the internal geometry and perform the kappa symmetry analysis which yields the corre-
sponding profile Q(r). However, much can be said without doing this analysis and indeed,
there are good reasons to relaxing strict requirements on matching to microscopics [37].

Second, to make the analysis more compact, we can actually combine several of the
above differential equations. To this end, let us combine the BPS equations for g and f , see
eq. (2.66), into a single second order differential equation. We have

g = f

2 −
1
2 log

(
−3

2e
−f − f ′

2

)
, (3.1)

and, thus, we get the following expression for the f function

f ′′ −
(
9e−2f + 9e−3fQ+ (−12e−f − 6e−2fQ)f ′ + (2 + e−fQ)f ′2

)
= 0 . (3.2)

In this and the following subsections we will aim to solve this differential equation.
Let us start by solving the BPS system perturbatively in the small flavor limit. By

defining ε ≡ Nf/Nc, such regime is attained by assuming the limit ε� 1.
Working to first order in the small parameter, ε, we make an Ansatz of the form:

Q = ε q0

f = f0 + ε f1

m = ε m1

g = g0 + ε g1

h = h0 + ε h1 .

(3.3)

We will take the solution for the {f0, g0, h0} to correspond to the AdS solution, and hence
f0 = g0 = log r. Using this it is quite straightforward to obtain:

f ′′1 + 8
r
f ′1 + 6f1

r2 − 4q0
r3 = 0 (3.4)

which admits a solution given by

f1 = cf1

r
+ cf2

r6 + 4
5r

∫ r

1

q0(z)
z

dz − 4
5r6

∫ r

1
z4q0(z)dz , (3.5)

with which we can immediately obtain the following for g1:

g1 = cf1

r
− cf2

4r6 + 4
5r

∫ r

1

q0(z)
z

dz + 1
5r6

∫ r

1
z4q0(z)dz . (3.6)

For the warp factors along the x2, x3 directions, we have

m′1 + 2q0
r2 = 0 , (3.7)

which we can solve in a very straightforward manner as:

m1 = cm − 2
∫ r

1

q0(z)
z2 dz . (3.8)
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We are now left with a differential equation for h1, which, after using the AdS value h0 = R
4r4 ,

is given by:

0 = h′1 + R

r6 (q0(r)− 5cf1)− 4R
r6

∫ r

1

q0(z)
z

dz , (3.9)

which can be solved as

h1 =
∫ r

1

R

z6

(
5cf1 − q0(z) + 4

∫ z

1

q0(w)
w

dw

)
dz . (3.10)

We just obtained closed set of integrals which completely determine the perturbed
metric components if the seed q0(r) (limit of Q(r)) is given. We have required that in the
flavorless limit ε → 0 one obtains the original AdS5 ×M5. We have also demanded an
overall additive integration constant in eq. (3.10) to vanish to have a sensible warping at
any nonzero number of flavors. In the next subsections we will assume some specific forms
for Q(r), which is enough to fix all the remaining integration constants.

3.2 Constant profile

We start with a simple choice for the seed q0(r). Let us consider constant q0, i.e. not
depending on the radial coordinate:

q0(r) = q0 . (3.11)

This choice would correspond to having massless flavor D3-branes; they span the full radial
coordinate. We remind the reader that we work to first-order in the small parameter, ε,
and a straightforward calculation leads to the following solution for the various functions
that determine our system

g = log r + ε
1

100r6

(
4q0r

5 + 100c1r
5 + 80q0r

5 log r
)
,

f = log r + ε

(
c1
r

+ 4q0(5 log r − 1)
25r

)
,

h = R

4r4 − ε
(
q0R

25r5 −
c1R

r5 −
4q0R log r

5r5

)
,

m = ε

(
c1 + 2q0

r

)
,

Q = εq0 .

(3.12)

We note that there are several constants. Notice that there are some terms that would
seem to lead to curvature singularities. This is not the case, however, as it will be discussed
later in section 3.4.

3.3 Non-trivial profile

We proceed to examine a non-trivial profile. We consider

q0(r) = r3

1 + r3 (3.13)
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where the exponent could in principle be anything larger than 2 to avoid divergences,
but here we choose to steer clear of clumpliness. As before, we work to leading order
in the ε parameter. This simple choice for the profile not only allows us to find rather
simple solutions, but is also motivated by the similarity to massive profiles; see also similar
considerations in [37]. After a straightforward computation we get

g = log r + ε G ,
f = log r − ε F ,

h = R

4r4 − ε H ,

m = ε

(
ai −

2
3
√

3 arctan
(2r − 1√

3

)
+ 2

3 log(r + 1)− 1
3 log(r2 − r + 1)

)
,

Q = ε
r3

1 + r3 ,

(3.14)

with
G = 1

450r6

(
W + 120r5 log(r3 + 1)

)
,

F = 2
225r6

(
W − 30r5 log(r3 + 1)

)
,

H = R

30

(√
3π − 3

r2 − 2
√

3 arctan
(2r − 1√

3

)
− 2 log(r + 1)

+ log(r2 − r + 1) + 8
r5 log(r3 + 1)

)
,

(3.15)

and also

W = 5
√

3π − 45r2 + 18r5 + 30
√

3 arctan
(2r − 1√

3

)
− 30 log(r + 1) + 15 log(r2 − r + 1).

(3.16)

3.4 Implications on the geometry

Let us discuss the implications of the above solutions at the level of the geometry. It is a
straightforward exercise to replace our solutions for a constant profile given by eq. (3.12)
as well as the ones we described for a specific non-trivial dependence of the holographic
coordinate, eqs. (3.14) to (3.16), into the expression for the geometry, eq. (2.1). We begin
by discussing the case of a constant profile. We are working to leading order in the small
flavor expansion ε� 1, with ε ∼ Nf . We want to examine both the UV and IR limits of
the metric. We obtain:

ds2 =
(

2r2
√
R

+A1

)
(−(dx0)2 + (dx1)2) +

(
2r2
√
R

+A2

)
((dx2)2 + (dx3)2)

+
(

2r2
√
R

+A3

)
dr2 +

(√
R

2 +A4

)
ds2
KE +

(√
R

2 +A5

)
(dτ +A)2 ,

(3.17)

where the various functions are listed in appendix B; see eq. (B.1). We can work in the same
vein for the profile with the non-trivial radial dependence. Again, the various functions
that will appear in eq. (3.17) after the appropriate IR and UV expansions are listed in
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appendix B and more precisely eq. (B.2). Before discussing the contributions from the
flavors, notice that with the identification R → 4R4

AdS, R → 4R4
5 one immediately finds

ds2 = ds2
AdS5

+ ds2
5 in its canonical form.

We want to examine the behavior of the non-vanishing components of the energy-
momentum tensor for the two different kind of solutions that we considered above. Let us
present the results up to first order in ε. For the constant profile solutions a straightforward
evaluation of eq. (2.69) on the solutions yields:

T branes
µν = −ηµν

12q0

r
√
R
ε ,

T branes
44 = −8q0r

2
√
R

ε ,

T branes
ii = − 2q0

r
√
R
ε ,

T branes
99 = −8q0r

2
√
R

ε ,

(3.18)

One could proceed similarly to find next-to-leading order results.
From the above, we can see that all contributions to the energy-momentum tensor are

finite, and also that T00 ≥ 0 as long as q0 ≥ 0. The condition q0 ≥ 0 is very reasonable as
this constant is related to the number of the flavor degrees of freedom.

Let us also spell out the contributions to the energy momentum tensor for the non-trivial
profile solutions we considered in the previous section. These read

T branes
µν = −ηµν

12r2(r3 + 2)
(r3 + 1)2

√
R
ε ,

T branes
44 = − 8r5

(r3 + 1)
√
R
ε ,

T branes
ii = − 2r2(r3 + 4)

(r3 + 1)2
√
R
ε ,

T branes
99 = − 8r5

(r3 + 1)
√
R
ε .

(3.19)

Notice that again all contributions are finite and there are no negative energy solutions
since T00 ≥ 0.

We want to examine, additionally, whether our solutions are smooth or they exhibit
curvature singularities. To do so, we compute the Ricci and the Kretschmann scalars and
the square of the Ricci tensor for the different choices of the profile functions we studied in
this work. Before we present our results we remind the basic formulae that we need to use
for the reader’s convenience.

We can calculate the Ricci, RAB, and Riemann, RABCD, tensors’ components in flat
coordinates for our ten-dimensional metric by using1

RAB = dωAB + ωAC ∧ ωCB ,

RAB = 1
2R

A
BCDE

C ∧ ED ,
(3.20)

1For a detailed account, we refer the reader to [29, section 3.3] which discusses Sasaki-Einstein manifolds.

– 16 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
1

and then we need to perform the following contractions

R = GMNRMN , R2 = RMNRMN , K = RABCDRABCD . (3.21)

The resulting expressions are lengthy and hence we refrain from providing them explicitly.
We instead find it more illuminating to discuss the results for the curvature invariants for
the two different profiles considered in this work.

For the ten-dimensional geometry under consideration and the constant profile solutions,
we have (up to leading order in the ε-expansion):

R = 6(I −R)
R3/2 ,

R2 = 640 I
4

R5 ,

K = 3840 I
2

R3 − 7680 I
3

R4 + 4160 I
4

R5 ,

(3.22)

and for the profile with a functional dependence on the r-coordinate we obtain:

R ∼ 12.5(I −R)
R3/2 ,

R2 = 640 I
4

R5 ,

K = 3840 I
2

R3 − 7680 I
3

R4 + 4160 I
4

R5 ,

(3.23)

and we remind the reader of eq. (2.3) which was used in order to express the curvature
invariants in terms of I eq. (2.4). Since the above are constants, the metrics that are related
to the solutions derived in this work are free of curvature singularities.

4 Conclusions

In this work we considered supersymmetric solutions that are realized at the intersections
of color D3- and flavor D3′-branes. The latter furnish a codimension two defect on the
worldvolume of the background D3-branes. In theories that accommodate fundamental
degrees of freedom, they are confined on the defect surface and all composite states
propagate in the two-dimensional subspace. The backgrounds we derived solve consistently
the equations of motion of type IIB supergravity in the presence of sources. These sources
correspond to a smearing of the flavor D-branes.

The smeared flavor D3′-branes are placed on the tip of a Calabi-Yau cone that can be
constructed with the use of a five-dimensional Sasaki-Einstein space. This generic case we
examined encodes the explicit constructions of S5, T 1,1, Y p,q, and La,b,c, which we describe
in appendix A. We derived a system of first-order differential equations, the BPS conditions,
that we were able to integrate. This achievement is an important stepping stone for further
explorations, which we will discuss next.
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Below we will give our undoubtebly biased list of interesting future research directions:
We have restricted our attention to the study of the geometry that is related to

unquenched flavors in the D3-D3′ intersection but we remained on a general level. It would
be interesting to consider the probe D3-brane embedding in the background derived here
for the special case of S5 and study the spectra of meson states, in order to compare to the
studies of the probe geometries [12, 13].

A natural extension of our work would be to consider the D3-D3′ system at finite
temperature. Constructing solutions for supergravity backgrounds with smeared flavor
D3′-branes corresponding to deconfining phases of the field theory does not seem to be a
daunting task given the success in other flavor deformations of the ambient super Yang-Mills
theories in (3+1) dimensions. The physics of quenched quarks in the D3-D3′ setup in the
presence of a black hole was considered in [57], where the flavor D3′-branes were treated
as probes.

Additionally, we can consider a circle compactification along either the x2 or x3

directions and impose antiperiodic boundary conditions on the fermions. This will induce
an explicit breaking of supersymmetry with a resulting cigar-like geometry. Studying such
a background would teach us lessons on a quiver gauge theories possessing a mass gap,
presumably also showing confining behavior.

Another future avenue would be to compute the holographic entanglement entropy and
compare the result to the computation in the geometry in the probe limit [58], in order to
better understand the effects of the smeared D-branes.

The addition of gauge fields is clearly a topic of great interest also from condensed
matter perspective. The phase diagram will certainly be modified in the Veneziano limit
and the dynamical effects from quarks running in loops will have many effects. For example,
it is known that the holographic matter as described by brane intersections do not have a
quasiparticle description at finite densities. In particular, for the (1+1)-dimensional fluid
the Landau-Fermi description is insufficient. The holographic description of the defect
D3-D3′ CFT in relation to the holographic description of quantum liquids was considered,
e.g. in [59–61]. One relevant aspect is to ask how is the propagation of the zero sound
affected by the presence of backreaction. Furthermore, it would be interesting to examine
the description of (1 + 1)-dimensional p-wave superconductors based on the backgrounds
derived here and understand whether they exhibit qualitative differences compared to the
probe-brane description [62].

We hope to report on some of these directions in future works.
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A On Sasaki-Einstein manifolds and their quivers

In the main body of the paper we worked with the most abstract parameterization of a
five-dimensional Sasaki-Einstein space. Here, we briefly discuss four very interesting choices
and the holographic field theories associated with those.

A.1 The sphere — S5

We start by specifying the Sasaki-Einstein space to be the five-dimensional sphere.

The geometry. We will write the S5 as a U(1) bundle over the CP2 basis. In this
parameterization

ds2
S5 = (dτ +A)2 + ds2

KE , (A.1)

we have explicitly

ds2
S5 = 1

4dχ
2 + 1

4 cos2 χ

2

(
(ω1)2 + (ω2)2 + sin2 χ

2 (ω3)2
)

+
(
dτ + 1

2 cos2
(
χ

2

)
ω3
)2

, (A.2)

where in the above the ωi are the left-invariant SU(2) one-forms. They are given by:

ω1 = cosψdθ + sinψ sin θdφ ,
ω2 = sinψdθ − cosψ sin θdφ ,
ω3 = dψ + cos θdφ .

(A.3)

In order to have an explicit expression for the complex structure two-form, given by
J = 1

2dA = E5̂ ∧ E6̂ + E7̂ ∧ E8̂, we need to specify the one-form basis components. They
are given by

E5̂ = 1
2 cos

(
χ

2

)
ω1 ,

E6̂ = 1
2 cos

(
χ

2

)
ω2 ,

E7̂ = 1
2 cos

(
χ

2

)
sin
(
χ

2

)
ω3 ,

E8̂ = 1
2dχ .

E9 = dτ + 1
2 cos2

(
χ

2

)
ω3 .

(A.4)

The field theory. The dual field theory is the four-dimensional N = 4 SYM. In an
N = 1 language we can write the matter content as a vector multiplet and three chiral
superfields, Φa with a = 1, 2, 3, that transform in the adjoint representation of the gauge
group. The gauge group is SU(N) and the interactions are encoded in the superpotential

Tr (Φ1[Φ2,Φ3]) , (A.5)

which is cubic.

A.2 The conifold — T 1,1

Here we wish to briefly describe the T 1,1 space and the associated holographic quiver theory.
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The geometry. The conifold is a Calabi-Yau threefold with a conical singularity. The
metric element can be simply expressed as ds2

6 = dr2 + r2ds2
T 1,1 , with T 1,1 being the base

of the Calabi-Yau cone. More specifically, it is the SU(2)×SU(2)
U(1) coset. Furthermore, it is a

U(1) bundle over an S2 × S2 space. The five-dimensional T 1,1 is written as

ds2
T 1,1 =

(1
3dτ +A

)2
+ ds2

KE , (A.6)

and we have, explicitly

ds2
T 1,1 = 1

6

2∑
i=1

(
dθ2
i + sin2 θidφ

2
i

)
+ 1

9

(
dτ +

2∑
i=1

cos θidφi
)2

. (A.7)

In order to have an explicit expression for the complex structure two-form, given by
J = 1

2dA = E5̂ ∧ E6̂ + E7̂ ∧ E8̂, we need to specify the one-form basis components. They
are given by

E5̂ = 1√
6

sin θ1dφ1 ,

E6̂ = 1√
6
dθ1 ,

E7̂ = 1√
6

sin θ2dφ2 ,

E8̂ = 1√
6
dθ2 ,

E9 = 1
3 (dτ + cos θ1dφ1 + cos θ2dφ2) .

(A.8)

The field theory. In order to delineate the basic features of the dual CFT, it is most
convenient to consider the conifold as the locus in C4 described by

z1z2 = z3z4 , (A.9)

which has a conical singularity at the origin, as it should. It is possible to find expressions
that relate the holomorphic coordinates to the angles of T 1,1, which are given by

z1
z3

= z4
z2

= e−iφ1 tan θ1
2 ,

z1
z4

= z3
z2

= e−iφ2 tan θ2
2 . (A.10)

Having described the relation between the angular parameterization of T 1,1 and the one in
terms of holomorphic coordinates, we want to stress that there is another way of solving
the conifold eq. (A.9). We can consider

z1 = A1B1 , z1 = A1B1 , z3 = A1B2 , z4 = A2B1 . (A.11)

The dual superconformal field theory is an N = 1 gauge theory with the group SU(N)×
SU(M) and includes four N = 1 chiral supermultiplets. These are identified with the
coordinates A1, A2, B1, B2. The fields A1, A2 transform in the (N,M) representation of
the gauge group, while B1 and B2 are in the (M,N) representation. All of them have an
R-charge given by 1

2 and the superpotential of the theory is:

gεijεklTr (AiBkAjBl) , (A.12)

with g being a constant.
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A.3 Cohomogeneity one — Y p,q

Here we wish to briefly describe the Y p,q manifolds and their holographic quiver descriptions.

The geometry. The five-dimensional Y p,q is written as

ds2
Y p,q =

(1
3dτ +A

)2
+ ds2

KE , (A.13)

and explicitly we have

ds2
Y p,q = 1− cy

6 (dθ2 + sin2 θdφ2) + 1
w(y)q(y)dy

2 + 1
36w(y)q(y)(dβ + c cos θdφ)2

+ 1
9 (dτ − cos θdφ+ y(dβ + c cos θdφ))2 ,

(A.14)

with the functions being given by:

w(y) = 2(a− y2)
1− cy , q(y) = a− 3y2 + 2cy3

a− y2 . (A.15)

In order to have an explicit expression for the complex structure two-form, given by
J = 1

2dA = E5̂ ∧ E6̂ + E7̂ ∧ E8̂, we need to specify the one-form basis components. They
are given by

E5̂ =
√

1− cy
6 dθ ,

E6̂ =
√

1− cy
6 sin θdφ ,

E7̂ = 1√
w(y)q(y)

dy ,

E8̂ =
√
w(y)q(y)

6 (dβ + c cos θdφ)2 ,

E9 = 1
3 (dτ − cos θdφ+ y (dβ + c cos θdφ)) .

(A.16)

The field theory. The superconformal quiver gauge theories that are dual to the Y p,q

spaces were originally worked out in [45, 46]. The associated gauge theories possess an
SU(2N)2p gauge group and there exists a global symmetry given by SU(2). There exists,
also, a global flavor symmetry given by U(1)F , as well as a baryon symmetry U(1)B. We
can build the superpotential of the theory by considering the contributions from three
different types of terms, which we write below

εαβ U
α
L V β Y , εαβ U

α
R V β Y , εαβ Z UαR Y UβL , (A.17)

where a trace over the color indices is implied. In total we have p + q couplings in the
expression for the superpotential.

In table 2, we present the charges for the bifundamental fields in the quivers.
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Field R-charge U(1)F U(1)B Number

Y
−4p2+3q2+2pq+(2p−q)

√
4p2−3q2

3q2 −1 p− q p+ q

Z
−4p2+3q2−2pq+(2p+q)

√
4p2−3q2

3q2 1 p+ q p− q

U
4p2−2p

√
4p2−3q2

3q2 0 −p p

V
3q−2p+

√
4p2−3q2

3q 1 q q

Table 2. Fields and charges in the Y p,q quivers.

Special limits of the spaces. From the cohomogeneity-one five-dimensional Sasaki-
Einstein spaces, Y p,q, we can obtain some interesting geometries by considering special
values for the variables that parameterize the metric [42]. We list them below:

• S5: the round five-sphere can be obtained by setting c = a = 1 above. The base of
the sphere is CP2.

• T 1,1: the conifold is the special case in which a = 3 and c = 0. For c 6= 0 we obtain
the orbifold T 1,1/Z2.

A.4 Cohomogeneity two — La,b,c

Here we wish to briefly describe the La,b,c manifolds and their holographic quiver descriptions.

The geometry. The five-dimensional La,b,c is written as

ds2
La,b,c = (dτ +A)2 + ds2

KE, (A.18)

with the four-dimensional Kähler-Einstein metric

ds2
KE = ρ2dx2

4∆x
+ ρ2dθ2

∆θ
+ ∆x

ρ2

(
sin2 θ

α
dφ+ cos2 θ

β
dψ

)2

+ ∆θ sin2 θ cos2 θ

ρ2

[(
α− x
α

)
dφ−

(
β − x
β

)
dψ

]2
,

(A.19)

with the relevant quantities appearing above being given by

A =
(
α− x
α

)
sin2 θdφ+

(
β − x
β

)
cos2 θdψ,

ρ2 = ∆θ − x,
∆x = x(α− x)(β − x)− µ,
∆θ = α cos2 θ + β sin2 θ.

(A.20)

As it turns out, the metrics depend only on two non-trivial parameters since we can set
to any non-zero value any one of α, β, µ just by performing a rescaling of the remaining
ones. The principal orbits are described as U(1)×U(1)×U(1) and hence they are toric.

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
1

They are degenerate when we evaluate them on the roots of ∆x = 0 and at the special
points θ = 0, π/2. We additionally present the ranges of the coordinates: 0 ≤ θ ≤ π/2,
0 ≤ {θ, ψ} ≤ 2π and the x-coordinate ranges from x1 ≤ x ≤ x2 with x1,2 denoting the
smallest roots of the equation ∆x = 0. The coordinate τ has a period 0 ≤ τ ≤ τ̆ and τ̆ is to
be defined subsequently. The three roots of the equation ∆x = 0 are related to the metric
constants α, β and µ as shown below:

µ = x1x2x3 , α+ β = x1 + x2 + x3 , αβ = x1x2 + x1x3 + x2x3 , (A.21)

where in the above x3 is the third root of the cubic equation we described previously.
We note that it is possible to find relations for x1, x2, α, β in terms of the quantities

a, b, c, d. They have been obtained previously, see [52], however, we find it convenient and
useful to repeat the analysis here. The normalized Killing vector fields are given by:

∂φ, ∂ψ, `i = Ai∂φ +Bi∂ψ + Ci∂A

with i being valued either 1 or 2 and also,

Ai = αCi
xi − α

, Bi = βCi
xi − β

, Ci = (α− xi)(β − xi)
2(α+ β)xi − αβ − 3x2

i

(A.22)

Now, we are at a position to give the value τ̆ which is equal to

τ̆ = 2πk|C1|
b

, k = gcd(a, b),

and d is defined to be:
d = a+ b− c (A.23)

The constants Ai, Bi, Ci are related to the integers a, b, c that characterize the La,b,c geometry
through the relations

aA1 + bA2 + c = 0 , aB1 + bB2 + d = 0 , aC1 + bC2 = 0 . (A.24)

A consequence of eq. (A.24) is that the ratios of A1C2 −A2C1, B1C2 −B2C1, C1, and C2
have to be rational. More specifically, it has been shown that

c

b
= A1C2 −A2C1

C1
,

d

b
= B1C2 −B2C1

C1
,

b

a
= −C1

C2
(A.25)

Using eqs. (A.21), (A.24) and (A.25) we can derive

c

b
= x1(x3 − x1)
x2(x3 − x2) ,

a

c
= (α− x2)(x3 − x1)

α(β − x1)
c

d
= α(β − x1)(β − x2)
β(α− x1)(α− x2) ,

c

d
= α(x3 − α)
β(x3 − β)

(A.26)

In order to have an explicit expression for the complex structure two-form, given by
J = 1

2dA = E5̂ ∧ E6̂ + E7̂ ∧ E8̂, we need to specify the one-form basis components. They
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Field R-charge U(1)F1 U(1)F2 U(1)B Number

Y 2(x3−x1)
3x3

1 0 a b

Z 2(x3−x2)
3x3

0 k b a

U1
2α
3x3

0 l −c d

U2
2β
3x3

−1 −(k + l) −d c

V1
4x3+2x1−2β

3x3
0 k + l b− c c− a

V2
4x3+2x1−2α

3x3
−1 −l c− a b− c

Table 3. Fields and charges in the La,b,c quivers.

are given by
E5̂ = ρ√

∆θ
dθ ,

E6̂ =
√

∆θ sin θ cos θ
ρ

(
α− x
α

dφ− β − x
β

dψ

)
,

E7̂ =
√

∆x

ρ

(
sin2 θ

α
dφ+ cos2 θ

β
dψ

)
,

E8̂ = ρ

2
√

∆x
dx .

E9 = dτ +A .

(A.27)

The field theory. The superconformal quiver gauge theories that are dual to the La,b,c
spaces were originally worked out in [47–49]. the associated gauge theories possess NG = a+b
gauge groups and a number of NF = a + 3b fields in the bifundamental representation.
There exists a global, flavor symmetry given by U(1)2

F , which is manifested in the bulk as
the subgroup of isometries that leave the Killing spinors invariant. There is an ambiguity
in the flavor symmetries as they mix with the baryon symmetry, U(1)B, of the theories.
We can build the superpotential of the theory by considering the contributions from three
different types of terms, which we write below

Tr Y U1 U2 , Tr Y U2 V1 , Tr Y U1 Z U2 , (A.28)

the first two of which are cubic and the last is a quartic. The associated R-charge is equal
to two and they are uncharged under the baryonic and the global flavor symmetries. We
can determine the number of terms of each kind by examining the multiplicities of the
fields. The number of individual terms from eq. (A.28) that build the superpotential are
respectively 2(b− c), 2(c− a), and 2a. The total number of terms that appear is, therefore,
given by NF − NG. In table 3, we present the charges for the bifundamental fields in
the quivers.

Special limits of the spaces. From the most general five-dimensional Sasaki-Einstein
manifolds, La,b,c, we can obtain some interesting geometries by considering special values
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for the variables that parameterize the metric [43]. We list them below:

• S5: the round five-sphere can be obtained by setting µ = 0 in eq. (A.20) above. The
base of the sphere is CP2.

• T 1,1: the conifold is the special case in which a = b = c = 1. In this limit, the two
lowest roots, given by x1 and x2 are degenerate and the four-dimensional Kähler-
Einstein geometry becomes S2 × S2.

• Y p,q: the cohomogeneity one Sasaki-Einstein manifolds are obtained from this general
case upon taking the limit a+ b = 2c, which in turn implies α = β. At the level of
explicit values for the parameters we have p− q = a, p+ q = b, and p = c.

B Metric components in the UV and in the IR

In this appendix we list the UV and IR values of the corrections to the line element
associated to the first-order ε expansion for the two profiles studied. For the constant profile
solutions, eq. (3.12), we have:

A1,IR = 4r(25c1−q0 +20 log r)
25
√
R

ε, A1,UV = 4r(25c1−q0 +20 log r)
25
√
R

ε,

A2,IR =
(

2c1r
2

√
R

+ 4r(25c1 +24q0 +20q0 log r)
25
√
R

)
ε,

A2,UV =
(

2c1r
2

√
R

+ 4r(25c1 +24q0 +20q0 log r)
25
√
R

)
ε ,

A3,IR = (−25c1 +q0−20 log r)
√
R

25r3 ε, A3,UV = (−25c1 +q0−20 log r)
√
R

25r3 ε ,

A4,IR = 2
25q0r

√
R ε, A4,UV = 2

25q0r
√
R ε,

A5,IR =−3q0
√
R

25r ε, A5,UV =−3q0
√
R

25r ε . (B.1)

For the profile that has a non-trivial dependence on the holographic radial coordinate,
eq. (3.14), the analogous quantities are given by:

A1,IR = 2r4

3
√
R
ε, A1,UV = 4r(20 log r − 1)

25
√
R

ε ,

A2,IR =
2
(
9ai +

√
3π
)
r2

9
√
R

ε , A2,UV =

16r(6 + 5 log r)
25
√
R

−
2
(√

3π − 3ai
)

3
√
R

 ε ,
A3,IR = −

√
R

6 ε , A3,UV =
√
R(1− 20 log r)

25r3 ε ,

A4,IR = 1
8r

2√R ε , A4,UV = 2
√
R

25r ε ,

A5,IR = −2πr4√R
15
√

3
ε , A5,UV = −3

√
R

25r ε .

(B.2)
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