91 research outputs found

    Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation

    Get PDF
    AbstractCongenital Short Bowel Syndrome (CSBS) is a rare gastrointestinal disorder in which the mean length of the small intestine is substantially reduced when compared to its normal counterpart. Families with several affected members have been described and CSBS has been suggested to have a genetic basis. Recently, our group found mutations in CLMP as the cause of the recessive form of CSBS, and mutations in FLNA as the cause of the X-linked form of the disease. These findings have improved the quality of genetic counselling for CSBS patients and made prenatal diagnostics possible. Moreover, they provided a reliable starting point to further investigate the pathogenesis of CSBS, and to better understand the development of the small intestine. In this review, we present our current knowledge on CSBS and discuss hypotheses on how the recent genetic findings can help understand the cause of CSBS

    Mutations in SCG10 Are Not Involved in Hirschsprung Disease

    Get PDF
    Hirschsprung disease (HSCR) is a congenital malformation characterized by the absence of enteric neurons in the distal part of the colon. Several genes have been implicated in the development of this disease that together account for 20% of all cases, implying that other genes are involved. Since HSCR is frequently associated with other congenital malformations, the functional characterization of the proteins encoded by the genes involved in these syndromes can provide insights into the protein-network involved in HSCR development. Recently, we found that KBP, encoded by the gene involved in a HSCR- associated syndrome called Goldberg-Shprintzen syndrome, interacts with SCG10, a stathmin-like protein. To determine if SCG10 is involved in the etiology of HSCR, we determined SCG10 expression levels during development and screened 85 HSCR patients for SCG10 mutations. We showed that SCG10 expression increases during development but no germline mutation was found in any of these patients. In conclusion, this study shows that SCG10 is not directly implicated in HSCR development. However, an indirect involvement of SCG10 cannot be ruled out as this can be due to a secondary effect caused by its direct interactors

    Parental experiences of rapid exome sequencing in cases with major ultrasound anomalies during pregnancy

    Get PDF
    BACKGROUND: Adding rapid Exome Sequencing (rES) to conventional genetic tests improves the diagnostic yield of pregnancies showing ultrasound abnormalities but also carries a higher chance of unsolicited findings. We evaluated how rES, including pre- and post-test counseling, was experienced by parents investigating its impact on decision-making and experienced levels of anxiety. METHODS: A mixed-methods approach was adopted. Participating couples (n=46) were asked to fill in two surveys (pre-test and post-test counseling) and 11 couples were approached for an additional interview. RESULTS: All couples accepted the rES test-offer with the most important reason for testing emphasizing their hope of finding an underlying diagnosis that would aid decision-making. The actual impact on decision-making was low, however, since most parents decided to terminate the pregnancy based on the major and multiple fetal ultrasound anomalies and did not wait for their rES results. Anxiety was elevated for most participants and decreased over time. CONCLUSION: Major congenital anomalies detected on ultrasound seem to have more impact on prenatal parental decision-making and anxiety then the offer and results of rES. However, the impact of rES on reproductive decision-making and experienced anxiety requires further investigation, especially in pregnancies where less (severe) fetal anomalies are detected on ultrasound. This article is protected by copyright. All rights reserved

    Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles

    Get PDF
    PURPOSE. To investigate the role of two deep-intronic ABCA4 variants, that showed a mild splice defect in vitro and can occur on the same allele as the low penetrant c.5603A>T, in Stargardt disease (STGD1). METHODS. Ophthalmic data were assessed of 18 STGD1 patients who harbored c.769-784C>T or c.4253+43G>A in combination with a severe ABCA4 variant. Subjects carrying c.[769784C>T; 5603A>T] were clinically compared with a STGD1 cohort previously published carrying c.5603A>T noncomplex. We calculated the penetrances of the intronic variants using ABCA4 allele frequency data of the general population and investigated the effect of c.769-784C>T on splicing in photoreceptor progenitor cells (PPCs). RESULTS. Mostly, late-onset, foveal-sparing STGD1 was observed among subjects harboring c.769-784C>T or c.4253+43G>A (median age of onset, 54.5 and 52.0 years, respectively). However, ages of onset, phenotypes in fundo, and visual acuity courses varied widely. No significant clinical differences were observed between the c.[769-784C>T; 5603A>T] cohort and the c.4253+43G>A or the c.5603A>T cohort. The penetrances of c.769-784C>T (20.5%-39.6%) and c.4253+43G>A (35.8%-43.1%) were reduced, when not considering the effect of yet unidentified or known factors in cis, such as c.5603A>T (identified in 7/7 probands with c.769-784C>T; 1/8 probands with c.4253+43G>A). Variant c.769-784C>T resulted in a pseudo-exon insertion in 15% of the total mRNA (i.e., similar to 30% of the c.769-784C>T allele alone). CONCLUSIONS. Two mild intronic ABCA4 variants could further explain missing heritability in late-onset STGD1, distinguishing it from AMD. The observed clinical variability and calculated reduced penetrance urge research into modifiers within and outside of the ABCA4 gene

    De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy

    Get PDF
    X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree

    Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening?

    Get PDF
    Objectives: To give an overview of the genetic and structural abnormalities occurring in fetuses with nuchal translucency (NT) measurement exceeding the 95th percentile at first-trimester screening and to investigate which of these abnormalities would be missed if cell-free fetal DNA (cfDNA) were used as a first-tier screening test for chromosomal abnormalities. Methods: This is a national study including 1901 pregnancies with NT≥95th percentile referred to seven university hospitals in the Netherlands between 1 January 2010 and 1 January 2016. All cases with unknown pregnancy outcome were excluded. Results of detailed ultrasound examinations, karyotyping, genotyping, pregnancy and neonatal outcomes, investigation by a clinical geneticist and post-mortem investigations were collected. Results: In total, 821 (43%) pregnancies had at least one abnormality. The rate of abnormalities was 21% for fetuses with NT between 95th and 99th percentile and 62% for fetuses with NT≥99th percentile. Prevalence of single-gene disorders, submicroscopic, chromosomal and structural abnormalities was 2%, 2%, 30% and 9%, respectively. Conclusion: Although cfDNA is superior to the combined test, especially for the detection of trisomy 21, 34% of the congenital abnormalities occurring in fetuses with increased NT may remain undetected in the first trimester of pregnancy, unless cfDNA is used in combination with fetal sonographic assessment, including NT measurement

    The common ABCA4 variant p.Asn1868ile shows nonpenetrance and variable expression of stargardt disease when present in trans with severe variants

    Get PDF
    PURPOSE. To assess the occurrence and the disease expression of the common p.Asn1868Ile variant in patients with Stargardt disease (STGD1) harboring known, monoallelic causal ABCA4 variants. METHODS. The coding and noncoding regions of ABCA4 were sequenced in 67 and 63 STGD1 probands respectively, harboring monoallelic ABCA4 variants. In case p.Asn1868Ile was detected, segregation analysis was performed whenever possible. Probands and affected siblings harboring p.Asn1868Ile without additional variants in cis were clinically evaluated retrospe

    Diagnostic exome sequencing in 266 Dutch patients with visual impairment

    Get PDF
    Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective

    Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    Get PDF
    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases
    • …
    corecore