445 research outputs found

    Isolation of Fecal Coliform Bacteria from the American Alligator (Alligator mississippiensis) in South Carolina

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Hunting for the Dark Matter Wake Induced by the Large Magellanic Cloud

    Full text link
    Satellite galaxies are predicted to generate gravitational density wakes as they orbit within the dark matter (DM) halos of their hosts, causing their orbits to decay over time. The recent infall of the Milky Way's (MW) most massive satellite galaxy, the Large Magellanic Cloud (LMC), affords us the unique opportunity to study this process in action. In this work, we present high-resolution (mdm=4×104Mm_{dm} = 4 \times 10^4 M_{\odot} ) N-body simulations of the MW-LMC interaction over the past 2 Gyr. We quantify the impact of the LMC's passage on the density and kinematics of the MW's DM halo and the observability of these structures in the MW's stellar halo. The LMC is found to generate pronounced Local and Global wakes in both the DM and stellar halos, leads to both local overdensities and distinct kinematic patterns that should be observable with ongoing and future surveys. Specifically, the Global Wake will result in redshifted radial velocities of stars in the North and blueshifts in the South, at distances larger than 45 kpc. The Local Wake traces the orbital path of the LMC through the halo (50-200 kpc), resulting in a stellar overdensity with a distinct, tangential kinematic pattern that persists to the present day. The detection of the MW's halo response will constrain: the infall mass of the LMC and its orbital trajectory, the mass of the MW, and it may inform us about the nature of the dark matter particle itself.Comment: 41 pages, 27 figures. Accepted to ApJ. Some terminology was changed. High-resolution images and figures can be found at https://bit.ly/2S25Yz

    The ACS Virgo Cluster Survey III. Chandra and HST Observations of Low-Mass X-Ray Binaries and Globular Clusters in M87

    Full text link
    The ACIS instrument on board the Chandra X-ray Observatory has been used to carry out the first systematic study of low-mass X-ray binaries (LMXBs) in M87. We identify 174 X-ray point-sources, of which ~150 are likely LMXBs. This LMXB catalog is combined with deep F475W and F850LP images taken with ACS on HST to examine the connection between LMXBs and globular clusters in M87. Of the 1688 globular clusters in our catalog, f_X = 3.6 +- 0.5% contain a LMXB and we find that the metal-rich clusters are 3 +- 1 times more likely to harbor a LMXB than their metal-poor counterparts. In agreement with previous findings for other galaxies, we find that brighter, more metal-rich clusters are more likely to contain a LMXB. For the first time, however, we are able to demonstrate that the probability, p_X, that a given cluster will contain a LMXB depends sensitively on the dynamical properties of the host cluster. Specifically, we use the HST images to measure the half-light radius, concentration index and central density, \rho_0, for each globular, and define a parameter, \Gamma, which is related to the tidal capture and binary-neutron star exchange rate. Our preferred form for p_X is then p_X \propto \Gamma \rho_0^{-0.42\pm0.11} (Z/Z_{\odot})^{0.33\pm0.1}. We argue that if the form of p_X is determined by dynamical processes, then the observed metallicity dependence is a consequence of an increased number of neutron stars per unit mass in metal-rich globular clusters. Finally, we find no compelling evidence for a break in the luminosity distribution of resolved X-ray point sources. Instead, the LMXB luminosity function is well described by a power law with an upper cutoff at L_X ~ 10^39 erg/s. (abridged)Comment: 23 pages, 21 figures. Accepted for publication in ApJ. Also available at http://www.physics.rutgers.edu/~pcote/acs/publications.htm

    Risk-based inspection as a cost-effective strategy to reduce human exposure to cysticerci of Taenia saginata in low-prevalence settings

    Get PDF
    Taenia saginata cysticercus is the larval stage of the zoonotic parasite Taenia saginata, with a life-cycle involving both cattle and humans. The public health impact is considered low. The current surveillance system, based on post-mortem inspection of carcasses has low sensitivity and leads to considerable economic burden. Therefore, in the interests of public health and food production efficiency, this study aims to explore the potential of risk-based and cost-effective meat inspection activities for the detection and control of T. saginata cysticercus in low prevalence settings

    Use of sonic tomography to detect and quantify wood decay in living trees.

    Get PDF
    Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees

    A policy-based framework for the determination of management options to protect vulnerable marine ecosystems under the EU deep-sea access regulations

    Get PDF
    Vulnerable marine ecosystems (VMEs) are particularly susceptible to bottom-fishing activity as they are easily disturbed and slow to recover. A data-driven approach was developed to provide management options for the protection of VMEs under the European Union “deep-sea access regulations.” A total of two options within two scenarios were developed. The first scenario defined VME closure areas without consideration of fishing activity. Option 1 proposed closures for the protection of VME habitats and likely habitat, while Option 2 also included areas where four types of VME geophysical elements were present. The second scenario additionally considered fishing. This scenario used VME biomass—fishing intensity relationships to identify a threshold where effort of mobile bottom-contact gears was low and unlikely to have caused significant adverse impacts. Achieving a high level of VME protection requires the creation of many closures (> 100), made up of many small (∼50 km2) and fewer larger closures (> 1000 km2). The greatest protection of VMEs will affect approximately 9% of the mobile fleet fishing effort, while closure scenarios that avoid highly fished areas reduce this to around 4–6%. The framework allows managers to choose the level of risk-aversion they wish to apply in protecting VMEs by comparing alternative strategies.En prensa2,27

    Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors

    Get PDF
    BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore