1,826 research outputs found

    Changes in Field Stored large Hay Packages

    Get PDF
    During a 3-year period, 12 large hay packages (six alfalfa, six prairie hay) were made using either Haybuster or Hesston process and stored from 8 to 29 months. Stacks were core sampled at periodic intervals for physical (moisture, density) and quality parameters (crude protein, neutral-detergent fiber, Crampton and Maynard cellulose, acid-detergent fiber, acid-detergent lignin, ash and in vitro dry matter digestibility. The hay package storage areas were located in north-central South Dakota

    Lead clusters: different potentials, different structures

    Full text link
    The lowest-energy structures of lead clusters interacting via a Gupta potential are obtained for N<151. Structures based on Marks decahedra dominate at the larger sizes. These results are very different from those obtained previously using a lead glue potential, and the origins of the differences are related back to differences in the potential.Comment: 6 pages, 4 figures, TAMC4 proceeding

    A grid-enabled problem solving environment for parallel computational engineering design

    Get PDF
    This paper describes the development and application of a piece of engineering software that provides a problem solving environment (PSE) capable of launching, and interfacing with, computational jobs executing on remote resources on a computational grid. In particular it is demonstrated how a complex, serial, engineering optimisation code may be efficiently parallelised, grid-enabled and embedded within a PSE. The environment is highly flexible, allowing remote users from different sites to collaborate, and permitting computational tasks to be executed in parallel across multiple grid resources, each of which may be a parallel architecture. A full working prototype has been built and successfully applied to a computationally demanding engineering optimisation problem. This particular problem stems from elastohydrodynamic lubrication and involves optimising the computational model for a lubricant based on the match between simulation results and experimentally observed data

    An optimal finite element mesh for elastostatic structural analysis problems

    Get PDF
    This paper investigates the adaptive solution of a class of elastic structural analysis problems through re-positioning of the finite element nodal points (r-refinement) using an approach known as the moving finite element method. Initially this adaptive method is derived for the elasticity problems of interest and it is then proved that, under certain conditions, the algorithm can yield optimal piecewise linear solutions on optimal simplicial finite element meshes. The equations of linear elasticity are then used to illustrate both the method itself and the optimality result that is derived. Finally, a number of numerical calculations are made to provide verification of the theoretical results

    High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6

    Get PDF
    A method for determination of atomic dipole matrix elements of principal transitions from the value of dispersion coefficient C_6 of molecular potentials correlating to two ground-state atoms is proposed. The method is illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach spectroscopy. The following reduced matrix elements are determined < 6S_{1/2} || D || 6P_{1/2} > =4.5028(60) |e| a0 and =6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are consistent with the results of the most accurate direct lifetime measurements and have a similar uncertainty. It is argued that the uncertainty can be considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig

    M5-brane geometries, T-duality and fluxes

    Full text link
    We describe a duality relation between configurations of M5-branes in M-theory and type IIB theory on Taub-NUT geometries with NSNS and RR 3-form field strength fluxes. The flux parameters are controlled by the angles between the M5-brane and the (T)duality directions. For one M5-brane, the duality leads to a family of supersymmetric flux configurations which interpolates between imaginary self-dual fluxes and fluxes similar to the Polchinski-Strassler kind. For multiple M5-branes, the IIB configurations are related to fluxes for twisted sector fields in orbifolds. The dual M5-brane picture also provides a geometric interpretation for several properties of flux configurations (like the supersymmetry conditions, their contribution to tadpoles, etc), and for many non-trivial effects in the IIB side. Among the latter, the dielectric effect for probe D3-branes is dual to the recombination of probe M5-branes with background ones; also, a picture of a decay channel for non-supersymmetric fluxes is suggested.Comment: 30 pages, 3 figure

    Gauge Theory and the Excision of Repulson Singularities

    Get PDF
    We study brane configurations that give rise to large-N gauge theories with eight supersymmetries and no hypermultiplets. These configurations include a variety of wrapped, fractional, and stretched branes or strings. The corresponding spacetime geometries which we study have a distinct kind of singularity known as a repulson. We find that this singularity is removed by a distinctive mechanism, leaving a smooth geometry with a core having an enhanced gauge symmetry. The spacetime geometry can be related to large-N Seiberg-Witten theory.Comment: 31 pages LaTeX, 2 figures (v3: references added

    Nanophotonic and hydrogel-based diagnostic system for the monitoring of chronic wounds

    Get PDF
    Chronic wounds present a major healthcare burden, yet most wounds are only assessed superficially, and treatment is rarely based on the analysis of wound biomarkers. This lack of analysis is based on the fact that sampling of wound biomarkers is typically invasive, leading to a disruption of the wound bed while biomarker detection and quantification is performed in a remote laboratory, away from the point of care. Here, we introduce the diagnostic element of a novel theranostic system that can non-invasively sample biomarkers without disrupting the wound and that can perform biomarker quantification at the point of care, on a short timescale. The system is based on a thermally switchable hydrogel scaffold that enhances wound healing through regeneration of the wound tissue and allows the extraction of wound biomarkers non-destructively. We demonstrate the detection of two major biomarkers of wound health, i.e., IL-6 and TNF-α, in human matrix absorbed into the hydrogel dressing. Quantification of the biomarkers directly in the hydrogel is achieved using a chirped guided mode resonant biosensor and we demonstrate biomarker detection within the clinically relevant range of pg/mL to μg/mL concentrations. We also demonstrate the detection of IL-6 and TNF-α at concentration 1 ng/mL in hydrogel dressing absorbed with clinical wound exudate samples. The high sensitivity and the wide dynamic range we demonstrate are both essential for the clinical relevance of our system. Our test makes a major contribution towards the development of a wound theranostic for guided treatment and management of chronic wounds
    corecore