1,114 research outputs found

    Improved Techniques for Heading Drivage

    Get PDF
    An obvious need exists for more efficient and safer techniques for driving development headings for longwalls and also, in many cases, for bord and pillar operations. A very expeditious solution to this problem is proposed, with the potential to drive such headings two or more times faster than can presently be achieved for any specific set of mining conditions

    General Relativistic Instability Supernova of a Supermassive Population III Star

    Full text link
    The formation of supermassive Population III stars with masses ≳\gtrsim 10,000 Msun in primeval galaxies in strong UV backgrounds at z∼z \sim 15 may be the most viable pathway to the formation of supermassive black holes by z∼z \sim 7. Most of these stars are expected to live for short times and then directly collapse to black holes, with little or no mass loss over their lives. But we have now discovered that non-rotating primordial stars with masses close to 55,000 Msun can instead die as highly energetic thermonuclear supernovae powered by explosive helium burning, releasing up to 1055 ^{55} erg, or about 10,000 times the energy of a Type Ia supernova. The explosion is triggered by the general relativistic contribution of thermal photons to gravity in the core of the star, which causes the core to contract and explosively burn. The energy release completely unbinds the star, leaving no compact remnant, and about half of the mass of the star is ejected into the early cosmos in the form of heavy elements. The explosion would be visible in the near infrared at z≲z \lesssim 20 to {\it Euclid} and the Wide-Field Infrared Survey Telescope (WFIRST), perhaps signaling the birth of supermassive black hole seeds and the first quasars.Comment: 23 pages, 4 figures (accepted to ApJ

    Many-body interactions among adsorbed atoms and molecules within carbon nanotubes and in free space

    Full text link
    This paper assesses the importance of three-body triple dipole interactions for quasi-one dimensional phases of He, Ne, H_2, Ar, Kr and Xe confined within interstitial channels or on the external surfaces of nanotube bundles. We find the substrate-mediated contribution to be substantial: for interstitial H_2 the well depth of the effective pair potential is reduced to approximately one half of its value in free space. We carry out ab initio calculations on linear and equilateral configurations of H_2 trimer and find that overlap interactions do not greatly change the DDD interaction in the linear configuration when the spacing is greater than about 3 A. However, the DDD interaction alone is clearly insufficient for the triangular configurations studied.Comment: 11 pages, 5 figure

    GreenCAP in the House: Resilience Tools to Unify the Black Community

    Get PDF
    GreenCAP in the House: Resilience Tools to Unify the Black Community This presentation describes how a small, scruffy youth development organization is leveraging its community outreach and engagement efforts around environmental literacy in the \u27hood to build a coalition of inner city organizations aligned to identify and address a broad swath of community resilience issues

    Evidence for Tankyrases as Antineoplastic Targets in Lung Cancer

    Get PDF
    Background: New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β -catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β -catenin phosphorylation complex. Methods: This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls. Results: Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models. Conclusions: Findings reported here uncovered deregulation of specific components of the Wnt pathway in both human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to target the Wnt pathway to combat lung cancer

    Novel strategies for assessing platelet reactivity

    Get PDF
    There are many approaches to assessing platelet reactivity and many uses for such measurements. Initially, measurements were based on the ability of platelets separated from other blood cells to aggregate together following activation with an appropriate ‘aggregating agent’. Later, measurements of platelet aggregation in blood itself were performed, and this led to a point-of-care approach to platelet function testing. Measurement of secretory activity through the appearance of the activation marker P-selectin on platelets now provides an alternative approach, which enables remote testing. Measurement of vasodilator-stimulated phosphoprotein phosphorylation is also moving toward application in situations remote from the testing laboratory. Here we provide an overview of the various approaches that are now available, assess their advantages and disadvantages, and describe some of the clinical situations in which they are being used

    Emerging climate-driven disturbance processes: Widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer

    Get PDF
    Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (< 2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management.Ye

    Identification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusers

    Full text link
    Maintenance of the drug‐addicted state is thought to involve changes in gene expression in different neuronal cell types and neural circuits. Midbrain dopamine (DA) neurons in particular mediate numerous responses to drugs of abuse. Long noncoding RNAs (lncRNAs) regulate CNS gene expression through a variety of mechanisms, but next to nothing is known about their role in drug abuse. The proportion of lncRNAs that are primate‐specific provides a strong rationale for their study in human drug abusers. In this study, we determined a profile of dysregulated putative lncRNAs through the analysis of postmortem human midbrain specimens from chronic cocaine abusers and well‐matched control subjects (n = 11 in each group) using a custom lncRNA microarray. A dataset comprising 32 well‐annotated lncRNAs with independent evidence of brain expression and robust differential expression in cocaine abusers is presented. For a subset of these lncRNAs, differential expression was validated by quantitative real‐time PCR and cellular localization determined by in situ hybridization histochemistry. Examples of lncRNAs exhibiting DA cell‐specific expression, different subcellular distributions, and covariance of expression with known cocaine‐regulated protein‐coding genes were identified. These findings implicate lncRNAs in the cellular responses of human DA neurons to chronic cocaine abuse.Long noncoding RNAs (lncRNAs) regulate the expression of protein‐coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up‐regulated antisense lncRNA, tumor necrosis factor receptor‐associated factor 3‐interacting protein 2‐antisense 1 (TRAF3IP2‐AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein‐coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2‐AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).Long noncoding RNAs (lncRNAs) regulate the expression of protein‐coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up‐regulated antisense lncRNA, tumor necrosis factor receptor‐associated factor 3‐interacting protein 2‐antisense 1 (TRAF3IP2‐AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein‐coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2‐AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/1/jnc13255.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/2/jnc13255-sup-0001-SupInfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/3/jnc13255_am.pd
    • …
    corecore