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Evidence for tankyrases as antineoplastic targets
in lung cancer

Alexander M Busch', Kevin C Johnson', Radu V Stan***’, Aarti Sanglikar®, Yashi Ahmed®”,
Ethan Dmitrovsky'”® and Sarah J Freemantle'”

Abstract

Background: New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common
cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt
signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or 3-catenin
mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1
and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the 3-catenin
phosphorylation complex.

Methods: This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine
transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and
pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo
in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative
to controls.

Results: Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine
transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKST and
TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human
lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors
XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These
inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in
conferring these antineoplastic effects. Individual or combined knockdown of TNKS1T and TNKS2 with siRNAs or
shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and
syngeneic lung cancer models.

Conclusions: Findings reported here uncovered deregulation of specific components of the Wnt pathway in both
human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological
approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and
decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to
target the Wnt pathway to combat lung cancer.
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Background

Lung cancer is the leading cause of cancer mortality for
men and women [1,2]. Despite smoking prevention and
cessation programs [3] and advances in early detection
[4], the 5-year survival rate for lung cancer is only 16%
with current therapies [1]. Although lung cancer inci-
dence rates have recently declined in the United States [1],
more lung cancer is now diagnosed when considered to-
gether in former- and never-smokers than in current
smokers [5]. Thus, even if all of the national anti-smoking
campaign goals are met, lung cancer will remain a major
public health problem for decades. New ways to treat or
prevent lung cancer are therefore needed.

One potential therapeutic target for lung cancer is the
Wnt signaling pathway [6-9]. The canonical Wnt signal-
ing pathway in mammals consists of a family of secreted
lipid-modified Wnt protein ligands that bind to a family
of 7-pass transmembrane Frizzled (Fzd) receptors, as
reviewed [10]. In brief, in the absence of ligand, glycogen
synthase kinase-3 (GSK3), in complex with axin and
adenomatous polyposis coli (APC), constitutively phos-
phorylates [-catenin, the primary Wnt signaling effector,
targeting it for ubiquitination and proteasomal destruc-
tion. Ligand binding engages a pathway involving Dishev-
elled (Dvl) that inhibits GSK3, allowing [-catenin to
accumulate in a hypophosphorylated form. This stabilized
form of B-catenin can translocate to the nucleus, where it
activates target gene transcription by complexing with T
cell factor (TCF) and lymphoid enhancer-binding factor
(LEF). In addition to key mediators of embryonic develop-
ment, these target genes include critical growth-regulators
such as myc and cyclin DI [11,12].

Aberrant Wnt signaling due to mutations in 5-catenin or
APC drives deregulated growth in both familial [13] and
non-hereditary colorectal cancers [14,15]. However, non-
small cell lung cancers (NSCLC), the most common type
of lung cancer, rarely harbor APC or S-catenin mutations
[16]. Rather, aberrant Wnt activity in lung cancer is linked
to increased expression of upstream Wnt signaling effec-
tors such as Dvl [17] or decreased expression of Wnt an-
tagonists such as Wnt-inhibitory factor 1 (Wif-1) [18,19].

Effective pharmacological inhibitors of the Wnt path-
way have only recently become available. Screens for
small-molecule antagonists of the Wnt pathway [20,21]
found two enzymes to be key mediators of Wnt signal-
ing. These are poly-ADP-ribose polymerase (PARP) en-
zymes, tankyrase (TNKS) 1 and TNKS2, which attach
poly-ADP-ribose (PAR) onto substrate proteins. Their
roles in regulating telomerase function [22] and mitotic
spindle formation [23,24] are known, but their role in
PARsylating axin so as to maintain the optimal level for
canonical Wnt signaling has only recently been recog-
nized. The compounds identified in these screens,
XAV939 [20], IWR-1 exo, and IWR-1 endo [21], act by
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specifically inhibiting the PARP activity of TNKS1 and
TNKS2 [25,26]. IWR-exo is a stereoisomer of TWR-1
endo with ~14-fold lower ECsy [21]. PARP inhibition is
a tractable pharmacological target in vivo, as antagonists
of other PARP homologs exert antineoplastic responses
in breast and ovarian cancer [27,28], as reviewed, [29].
This study explored the hypothesis that inhibition of
TNKS by pharmacological or genetic means would
inhibit lung cancer growth in vitro and in vivo in
clinically-relevant transgenic mouse models of lung can-
cer that were previously developed, as reviewed [30].
Using comprehensive microarray analyses, we found that
TNKS were overexpressed in murine lung cancers rela-
tive to adjacent normal lung tissues. These results were
confirmed by semi-quantitative real-time polymerase
chain reaction (qPCR) assays. Individual treatments of a
well-characterized panel of human and murine lung
cancer cell lines with the TNKS inhibitors XAV939 or
IWR-1 inhibited cell growth, reduced the activation of a
Wnt-responsive lentiviral luciferase construct, and stabi-
lized protein levels of axin and both TNKS. Genetic in-
hibition of TNKS was independently achieved by use of
siRNA or shRNA-mediated knockdown in lung cancer
cells. This resulted in axin stabilization, marked growth
inhibition, and repressed lung cancer formation in
murine xenograft and transgenic syngeneic lung cancer
models. Taken together, the findings presented here un-
cover TNKS as new antineoplastic lung cancer targets.

Methods

Murine transgenic lung tissues

We previously described clinically-relevant cyclin E-trans-
genic mouse lines that develop pulmonary pre-malignant
lesions and lung adenocarcinomas [31]. For microarray
analyses, adenocarcinomas and adjacent histopathologic-
ally normal lung tissues were each harvested from age-
and sex-matched mice and immediately placed in
RNAlater (Qiagen, Valencia CA). These specimens were
isolated from human surfactant protein C (SP-C)-driven
wild-type human cyclin E-transgenic mice (as previously
described [31]). Normal non-transgenic lung tissue was
harvested from age-and sex-matched FVB mice (NCI
Frederick National Laboratory, Frederick MD). For qPCR
analyses, malignant and adjacent normal lung tissues were
isolated from additional transgenic mice of both wild-
type and proteasome-degradation resistant human cyclin
E-transgenic lines and snap frozen in liquid nitrogen.

Gene expression microarray analyses

Total RNA was isolated with TRIzol RNA isolation re-
agent (Life Technologies, Carlsbad CA). GeneChip Mouse
Genome 430 2.0 Arrays were purchased (Affymetrix,
Santa Clara CA), with 11-probe sets covering 39,000 tran-
scripts within the mouse genome. Hybridizations were
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performed according to Affymetrix guidelines at the
Dartmouth College Microarray Shared Resource using an
Affymetrix GeneChip Workstation. Biotin-labelled cRNA
was generated from 5 pg of total RNA and hybridized to
the Mouse Genome 430 2.0 chip. A total of 12 hybridiza-
tions were performed comprising 12 independent biologic
samples organized into three groups of four. Raw data
from each hybridization was normalized by Robust
Multichip Average (RMA), background corrected, and fil-
tered for presentation using GeneSifter software (Geospiza
Inc., Seattle WA). The remaining probe sets were then an-
alyzed by GeneSifter software for species involved in the
Wnt pathway. Raw and RMA data is available from the
NCBI Gene Expression Omnibus (GEO) with accession
number GSE45744.

Paired human-malignant lung tissues

A tissue bank accrued from consecutive cases over
8 years at Dartmouth-Hitchcock Medical Center contai-
ning paired human normal and malignant lung tissues
was described [32]. Dartmouth’s Institutional Review
Board (IRB) reviewed and approved the acquisition and
analyses of these tissues.

Semiquantitative real time RT-PCR assays

Total mRNA was isolated using the RNeasy kit with on-
column DNAse digestion (Qiagen). RT was performed
with the High Capacity ¢cDNA RT Kit (Applied Bio-
systems, Foster City CA) and a Peltier Thermal Cycler
(MJ Research, Waltham MA). The qPCR assays were
performed using iTaq Fast SYBR Green Supermix with
ROX (Bio-Rad Laboratories, Hercules CA) and the 7500
Fast Real-Time PCR System (Applied Biosystems). All
assays were performed in triplicate. Primers sequences
are presented in Additional file 1: Figure SI.

Cell culture

Murine lung cancer cell lines studied included EDI,
ED2, and EDI1L (derived from a single-cell subclone of
ED1), which were each previously described [32,33]. The
C-10 immortalized murine bronchial epithelial cell line,
BEAS-2B immortalized human bronchial epithelial cell
line, NCI-H522, Hop62, and A549 human lung cancer
cell lines, and the 293T human embryonic kidney cell
line were each purchased (ATCC, Manassas VA). All cell
lines except BEAS-2B and 293T cells were cultured in
RPMI 1640 medium (Corning, Manassas VA) supple-
mented with 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, Waltham MA) at 37°C in a 5% CO,
humidity-controlled incubator. BEAS-2B cells were cul-
tured in serum-free LHC-8 medium (Life Technologies)
supplemented with 0.1% epinephrine. The 293T cell line
was cultured in high glucose DMEM (Life Technologies)
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supplemented with 10% FBS and 4 mM L-glutamine
(Life Technologies).

Reagents

TNKS inhibitors XAV939 [20], IWR-1 endo, and IWR-1
exo [21] were purchased (Cayman Chemical, Ann Arbor
MI) and dissolved in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St. Louis MO). Recombinant murine Wnt3a
ligand was purchased (R&D Systems, Minneapolis MN)
and dissolved in 1% bovine serum albumin (BSA; Sigma-
Aldrich) in phosphate buffered saline (PBS; Corning).

Proliferation, clonogenicity, and washout studies

For cell proliferation assays, ED1 (2 x 10°), EDIL (2 x
10%), ED2 (5x10%), C-10 (5 x 10%), BEAS-2B (5 x 10°),
H522 (5x10%), and A549 (5x10% were individually
plated in growth medium in triplicate in individual wells
of 12-well tissue culture plates (Corning) 24 hours be-
fore drug or vehicle treatments. Cell viability was mea-
sured 72 hours following these treatments using the
CellTiter-Glo (Promega, Madison WI) luminescent cell
viability kit and a TD-20/20 Luminometer (Turner De-
signs, Sunnyvale CA).

For clonal growth assays, ED1 cells were plated at a
density of 200 cells per well in 6-well tissue culture plates
(Corning) in triplicate 24 hours before drug or vehicle
treatments. Colonies were stained after 7 days with
DiffQuick (IMEB Inc, San Marcos CA) and counted using
a Col Count instrument (Oxford Optronix, Oxford UK).

For washout studies, ED1 (3 x 10%) and A549 (7.5 x
10*) were independently plated in 10 cm tissue culture
plates (Corning) in complete growth medium and indi-
vidually treated 24 hours later with vehicle, XAV939,
IWR-1 endo, or IWR-1 exo at 10 uM dose. Following
3 days of culture in drug, plates were trypsinized and
replated at equal densities into 12-well plates in com-
plete medium, as described for cell proliferation assays
above. Cells were treated 6 hours later with vehicle, for
control and washout wells, or the respective drug at
10 pM to maintain continuous treatment. Cell viability
was assessed after 24 hours and 72 hours of treatment
by CellTiter-Glo.

Immunoblot analyses

Cells were lysed in a modified radioimmune precipitation
buffer, as before [34]. Protein concentrations were assayed
using the BCA Protein Assay Reagent (Thermo Fisher
Scientific). Twenty-five micrograms of protein were
size-fractionated using 4-15% gradient sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
ReadyGels (Bio-Rad Laboratories) before electroblot-
ting onto nictrocellulose membranes. Membranes were
blocked with 5% nonfat milk in 0.1% Tween 20 (Sigma-Al-
drich) tris-buffered saline (TBST), which was also the
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antibody diluent, except in the case of the activated
[-catenin antibody (ABC), which was diluted in 1% milk
TBST as in prior work [6,35]. Antibodies and dilutions
used are displayed in Additional file 1: Figure S1. Primary
antibodies were detected with horseradish peroxi-
dase-conjugated species-appropriate secondary antibodies
(Santa Cruz Biotechnology, Santa Cruz CA and GE
Healthcare Bio-Sciences Corp, Piscataway NJ) and visual-
ized with the ECL Prime electrochemiluminescent detec-
tion reagent (GE Healthcare) and radiographic film.

Transient transfection assays

For siRNA knockdown experiments, pairs of independ-
ent double-stranded siRNAs were purchased (Integrated
DNA Technologies Inc., Coralville IA) that each targeted
human or mouse TNKS1 or TNKS2. SiRNA sequences
are presented in Additional file 1: Figure S1. A non-
targeting scrambled siRNA was used as the control. ED1
(1x10%, ED2 (1.5x10%, A549 and (5x 10%), Hop62
(5 x 10%) cells were independently plated in triplicate on
6-well tissue culture plates 24 hours before transfection.
Transient transfections of each respective siRNA
were accomplished with Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturer’s protocol.
Total RNA was collected and analyzed as described
above to verify these knockdowns at 24 hours post-
transfection, with cell growth assessed 72 hours post-
transfection by CellTiter-Glo assay, as already described.
Comparisons were made to cells transfected with the
non-targeting scrambled control siRNA.

Lentivirus production, stable infections, and luciferase
assays
The 7TFP derivation of the pSuperTOPFlash vector and
the EBP constitutively active -catenin vector [36] were
purchased (plasmids 24308 and 24313, respectively;
Addgene, Cambridge MA). Two independent shRNA
constructs targeting murine TNKS1 in a G418-selectable
backbone, pLKO.1-CMV-Neo, and TNKS2 in a puro-
mycin-selectable backbone, TRC2, were purchased, as
well as scrambled controls in matched selectable back-
bones (Sigma-Aldrich). The sequences of these hairpin
constructs are shown in Additional file 1: Figure S1.
Lentiviruses were generated with an optimized system
[37] consisting of the transfer vector of interest
and packaging plasmids pCMV-dR8.2 (plasmid 8455;
Addgene) and pMD2.G (plasmid 12259; Addgene).
These vectors were transfected into 293T cells using
TransIT-LT1 transfection reagent (Mirus Bio, Madison
WI) according to the manufacturer’s protocol. Lentiviral
titers supplemented with 1% BSA were collected after
24 hours and used to infect murine ED1 lung cancer
cells in the presence of 4ug/mL polybrene (Sigma-
Aldrich). ED1 cells infected with 7TFP, EBP, or TNKS2
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shRNA vectors were selected with 2.5 ug/mL puromycin
(Life Technologies). ED1 cells infected with the TNKS1
shRNA vectors were selected with 1.5 mg/mL G418 sul-
fate (Corning). ED1 cells transduced with the combined
controls or combined shRNAs received simultaneous
drug selection at the above concentrations.

For luciferase assays, ED1 cells infected with the 7TFP
vector (1 x 10*) were plated 24 hours before drug or ve-
hicle treatments in triplicate in 12-well tissue culture
plates. Treatments were with TNKS inhibitors or vehicle
combined with a canonical Wnt activator or control
(20 mM LiCl controlled by 20 mM NaCl or 25 ng/mL
murine recombinant Wnt3a controlled by 1% BSA/PBS).
Cells were lysed 16 hours after these treatments using
the Reporter Lysis Buffer for the Luciferase Assay system
(Promega). Luciferase activity was measured and nor-
malized to protein concentrations.

In vivo tumorigenicity studies

The described animal protocols were reviewed and ap-
proved by Dartmouth’s Institutional Animal Care and Use
Committee (IACUC). For both experiments, ED1 cells
were infected with either both shRNA vector controls
(dual shCTRL) or TNKS1 and TNKS2 combined knock-
down (dual shTNKS) and selected, as described above. For
xenograft studies, 1 x 10° indicated cells were resuspended
in 200pL of Growth Factor Reduced Matrigel (BD Biosci-
ences, San Jose CA) and injected into the left flanks of
8 week old female NCr Nu/Nu athymic mice (NCI Fred-
erick National Laboratory, Frederick MD). There were 10
mice in the dual control arm and 10 mice in the dual
knockdown arm. Tumor diameters were measured twice
weekly with vernier calipers by an investigator blinded as
to the cell lines under analysis, and mice were sacrificed
when mean tumor diameter reached 15 mm or when mice
became moribund or cachexic, whichever arose first.
Tumor volume was calculated as 1/6 * Length * Width?,
where width was defined as the smaller of the cranial/cau-
dal diameter or dorsal/ventral diameter [38].

For the syngeneic study, 1x10° indicated cells were
resuspended in 200pL PBS and injected into the tail veins
of 8-week-old female FVB mice (NCI Frederick). There
were 3 mice in the dual control arm and 5 mice in the
dual shRNA arm. Mice were sacrificed 4 weeks post-
injection and lung tissues were formalin-fixed, paraffin-
embedded, and sectioned for histopathology, as before
[31]. Hematoxylin and eosin staining was used and a path-
ologist blinded as to the treatment arms scored for lung
tumor formation, as in prior work [39,40].

Statistics

Data shown represent at least three independent repli-
cate experiments done in triplicate for the in vitro stud-
ies. Error bars indicate mean +/- standard deviation
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(SD), except in the case of the xenograft study, where
error bars indicate mean +/- standard error of the mean
(SEM). Statistical significance was determined by two-
tailed t-test assuming unequal population variances in
GraphPad InStat or Prism (GraphPad Software Inc,
LaJolla CA) with significance set at P<0.05, except in
the case of the syngeneic study, when a one-tailed ¢-test
was used, and the xenograft study, where ANOVA was
used to compare the growth curves and Kaplan-Meier
analysis was used to compare survival to sacrificial end-
point. Multiple comparison in the proliferation studies
was handled with ANOVA followed by Dunnett’s post-
test. Microarray data were analyzed with the GeneSifter
analysis suite using the embedded ANOVA function,
with significance at P < 0.05.

Results

The Wnt pathway and TNKS 1 and 2 are deregulated in
lung cancer

We previously reported a cyclin E-expressing murine
transgenic lung cancer model [31] that recapitulated fre-
quent features of human lung carcinogenesis [32,39-41].
We first asked whether this model deregulated the Wnt
pathway, as occurs in human NSCLC [9,16-19]. Com-
prehensive microarray analyses compared non-trans-
genic murine lung, transgenic murine normal lung,
and transgenic murine lung cancer. These analyses
established Euclidean hierarchical clustering of each
tissue by Wnt family member expression, with similar
expression levels of these species detected in murine
non-transgenic lung and transgenic normal lung tissue,
but a different expression pattern in transgenic lung can-
cers (microarray data available at NCBI's Gene Expres-
sion Omnibus, accession number GSE45744).

Five hundred probes on the array represent 258
unique genes that are functionally annotated in Gene
Ontology (www.geneontology.org) as members of the
Wnt receptor signaling pathway. In our focused analysis
of this pathway, 161 probes representing 117 unique
genes (32% and 45% of the totals, respectively) were sig-
nificantly (P <0.05 by ANOVA) up- or downregulated in
comparison to the murine non-transgenic or adjacent
transgenic normal lung controls (Figure 1A). Among
the overexpressed mRNAs were: porcupine (PORCN),
encoding an O-acyltransferase responsible for lipid-
modifying Wnt ligands prior to secretion [42]; FZD2,
encoding a Wnt/Ca®" signaling-related Frizzled receptor
[43]; and MYC. Repressed genes included those coding
for Wnt antagonists such as WIF1 (discussed above) and
PRICKLE], a putative tumor suppressor that represses
the Wnt pathway by destabilizing Dvl [44]. TNKS 1 and
2 were found to be moderately overexpressed, at 1.30-
fold and 1.43-fold expression respectively, in comparison
with transgenic normal adjacent lung.
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The microarray results were independently validated
by qPCR assays in murine lung cancers and their adja-
cent normal lung tissues. In a panel of 12 paired normal
and malignant lung tissues derived from 7 wild-type cyc-
lin E transgenes and 5 proteasome-degradation resistant
cyclin E transgenes, 10 showed repression of WIF1 in
the lung cancers versus adjacent normal lung tissues
(Figure 1B). This result is consistent with prior pub-
lished work from human NSCLC cases [18,19]. Analysis
of TNKS 1 and TNKS2 expression in the same panel
showed overexpression of TNKS1 in 6 of 12 tumors and
TNKS2 in 9 of 12 tumors, relative to adjacent normal
lung tissues (Figure 1C). The qPCR analysis of WIF1
and TNKS expression in three cases of human lung
adenocarcinoma revealed the expected repression of
WIF1 and moderate overexpression of TNKS2 (as com-
pared to adjacent normal lung tissues) in all examined
cases, as well as for TNKS1 in 1 of 3 cases (Figure 1D).

Antiproliferative effects of TNKS inhibitors in lung cancer
cells

Having established deregulation of Wnt pathway genes
and TNKS overexpression in human and murine lung
cancer, we next asked whether inhibition of the Wnt
pathway with the TNKS inhibitors XAV939, IWR-1
endo, or IWR-1 exo would inhibit growth of murine or
human lung cancer cell lines. Individual treatments with
increasing doses of these three compounds (100nM to
50 uM) dose-dependently decreased proliferation of the
ED1, ED1L, and ED2 murine lung cancer cell lines in
comparison to vehicle controls after 3 days of treatment
(Figure 2A with statistical analysis in Additional file 2:
Figure S2). Independent treatments of the human lung
cancer cell lines A549, Hop62, and H522 dose-depen-
dently decreased proliferation of each of these lines ver-
sus vehicle controls after 3 days of culture (Figure 2B
with statistical analysis in Additional file 2: Figure S2).
The compounds also inhibited growth of the C10 mur-
ine immortalized bronchial epithelial cell line (Figure 2C,
left panel). The BEAS-2B immortalized human bronchial
epithelial cell line was found to be more resistant to
growth inhibition by these agents, except for the IWR-1
endo compound (Figure 2C, right panel). Additionally,
treatments of the ED1 cell line plated under colony-
forming conditions with 10 uM of each TNKS inhibitor
significantly inhibited 7-day colony formation relative to
vehicle control, as shown with colony number quantifi-
cation (Figure 2D).

Cells were growth inhibited by these compounds but
did not show appreciable apoptosis (data not shown). In
drug washout experiments, normal cell growth was re-
stored after removal of the drugs, confirming that the
effects of these compounds are reversible (Additional file
3: Figure S3).
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Figure 1 Wnt pathway deregulation in murine and human NSCLC. Comprehensive gene expression microarrays and gPCR assays reveal
deregulation of specific components of the Wnt signaling pathway in murine and human NSCLC. (A)161 probes on the array representing 117
unique genes defined by Gene Ontology under the classification Wnt receptor signaling pathway are significantly (ANOVA, P < 0.05) over- or
under-expressed in murine cyclin-E transgenic lung cancers as compared to adjacent normal or non-transgenic mouse lung. (B) The gPCR-based
assays of Wif1 expression levels in a panel of paired malignant (samples labeled T) and normal (samples labeled N) lung tissues from 12 transgenic
cyclin E mice, both wild type (WT) and proteasome-degradation resistant (T62A/T380A). (C) The gPCR-based measurements of TNKS1T and TNKS2
expression levels in the same panel of paired malignant and normal murine lung tissues. (D) The gPCR-based measurement of Wif1 (left panel) and
TNKS1 and TNKS2 (right panel) expression levels in three human lung adenocarcinoma tumor samples versus adjacent normal lung tissue.

TNKS inhibitors act as canonical Wnt pathway inhibitors
in lung cancer

We sought to validate whether the TNKS inhibitors
exerted effects on Wnt signaling in human and murine
lung cancer cell lines. Immunoblot analyses of ED1 and
ED2 murine lung cancer cell lines (Figure 3A) and A549
and Hop62 human lung cancer cell lines (Figure 3B) fol-
lowing treatment with 10 pM of each inhibitor revealed

stabilization of TNKS1, as expected due to inhibition of
TNKS auto-PARsylation function [45]. Stabilization of
TNKS2 was only apparent in ED1. We also observed
accumulation of axin 1 at the protein level in all cell
lines, a key component of the axin/APC/GSK3 p-catenin
destruction complex and direct target of TNKS
PARsylation. This relationship appeared to be dose-
dependent, as evidenced in the EDI1L cell line following
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antineoplastic effects against NSCLC cell lines in vitro, as compared to vehicle controls. (A) Cell proliferation dose-response curves for the three
TNKS inhibitors against ED1 (left panel), ED1L (middle panel), and ED2 (right panel) murine lung cancer cell lines as compared to vehicle control
are shown, as measured by luminescent cell viability assay after 3 days. (B) Cell proliferation dose-response relationships for the three TNKS
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against the immortalized bronchial epithelial cell lines C-10 (murine) and BEAS-2B (human) versus vehicle control. (D) Ten-day colony formation is
shown for the ED1 cell line following individual treatment with 10 uM of each TNKS inhibitor or vehicle control (left two images), and quantified
(right panel). Error bars represent standard deviations of three experiments in triplicate. (* p < 0.05).

0%
100nM 500nM 1pM  SuM  10pM  25uM  50uM

XAV939

120%

100% [ { B
80% I
0% I
40%

20%

Growth (% of Vehicle)
]

0%
100nM 500nM 1pM  SuM  10pM  25uM  50uM

XAVI39

3 days of treatment with the inhibitors at increasing
doses (Figure 3C).

Stable infection of EDIL (data not shown) or ED1
(Figure 3D) with a lentiviral vector containing a lucifer-
ase gene cassette under control of a 7x TCF binding site
promoter [36] allowed for monitoring of the transcrip-
tional activity of the Wnt pathway during TNKS inhib-
ition. Wnt reporter activity was normalized to the total
protein content of the cells to account for growth

inhibitory effects. Basal (unstimulated) activity of the
Wnt reporter was low in both cell lines, and was not
significantly affected by tankyrases inhibition (data not
shown). Co-treatment of either cell line with a Wnt acti-
vator (20 mM LiCl or 25 ng/mL recombinant murine
Wnt3a) and a 10 pM dosage of each TNKS inhibitor led
to a significant reduction in normalized Wnt-responsive
luciferase activity versus vehicle controls at 16 hours
post-stimulation (Figure 3D).
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Figure 3 TNKS inhibition antagonizes canonical Wnt signaling in lung cancer. (A) Immunoblots for Wnt pathway components axin 1,
TNKS1, and TNKS2 are shown in ED1 (left panel) and ED2 (right panel) murine lung cancer cell lines following 3 days treatment with TNKS
inhibitors or vehicle. (B) Immunoblots are shown for Wnt pathway components, as in panel A, in A549 (left panel) and Hop62 (right panel)
human NSCLC cell lines following 3 days treatment with TNKS inhibitors or vehicle. (C) Dose-response of Wnt pathway component stabilization is
shown in EDI1L cells following 3 days treatment with TNKS inhibitors or vehicle at doses shown. (D) Activity of a lentiviral Wnt-responsive
luciferase construct stably expressed in the ED1 cell line was measured following 16 hours cotreatment with TNKS inhibitors and a Wnt activator:
20 mM LiCl (left panel) or 25 ng/mL recombinant murine Wnt3a (right panel). Luciferase activity was normalized to total protein concentrations in
each sample and compared to vehicle control. Error bars represent SD of three experiments in triplicate. (* p < 0.05).

siRNA-mediated repression of TNKS1 and TNKS2 in cancer
cell lines

Because tool compounds such as XAV939 and IWR-1
likely have off-target effects, we sought to validate that
the antineoplastic activity of these inhibitors was due to
specific TNKS antagonism through independent genetic
approaches. Transient TNKS knockdowns were accom-
plished with two siRNAs that independently target
TNKS1 or TNKS2 in human or mouse cells. Transfec-
tion of these siRNAs alone or in combination led to sig-
nificant (P < 0.05) repression of TNKS1 or TNKS2 at the
mRNA level in ED1 (Figure 4A, left panel) and ED2

(Figure 4B, left panel) murine cell lines at 24 hours, ver-
sus controls. Similar TNKS knockdown was achieved in
the human lung cancer cell lines A549 (Figure 4C, left
panel) and Hop62 (Figure 4D, left panel).

The consequences of TNKS knockdown on prolifera-
tion for each of the examined NSCLC cell lines was
assessed after 3 days culture versus non-targeting con-
trol siRNA. Single knockdown of either TNKS1 or
TNKS2 or dual TNKS knockdowns were growth inhibi-
tory in the ED1, A549, and Hop62 lung cancer cell lines
(Figures 4A, 4C, and 4D, respectively). In ED2 cells, only
the combined knockdown achieved significant growth
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repression versus control (Figure 4B). The dual siRNA
knockdown of TNKS1 and TNKS2 was not significantly
more growth-suppressive than was either of the individ-
ual knockdowns in ED1, A549, or Hop62 cells. The
growth inhibitory effects of TNKS knockdown were
accompanied by stabilization of axinl at the protein
level, as shown in ED1 (Figure 5A) and Hop62 cells
(Figure 5B).

Rescue of TNKS inhibitor growth effects by activated
B-catenin

To further show Wnt pathway specificity of in vitro
antineoplastic effects of these TNKS inhibitors, we
performed a rescue experiment. ED1 cells were stably
infected with an empty vector or an activated form of
B-catenin that cannot be phosphorylated by GSK3 and
thus remains constitutively active. Expression of this
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construct was confirmed at the protein level (Figure 5C).
Individual treatments of these stable cell lines with
10 pM TNKS inhibitors for 3 days showed differential
growth inhibition between [-catenin expressing cells
and controls, with a significant rescue of ~20% growth
in each case (Figure 5D).

shRNA repression of TNKS1 and TNKS2 has antineoplastic
activity
To confirm independently the transient in vitro knock-
down results in the in vivo setting, we achieved stable
genetic knockdown of the TNKS, alone or in combin-
ation, in the ED1 murine lung cancer cell line with
the indicated TNKS shRNAs versus control shRNAs
(Figure 6A). ED1 cells were infected with independent
shRNAs targeting TNKS1 or TNKS2, or both species.
Stable knockdown at the mRNA level was achieved fol-
lowing G418 (TNKS1 and pLKO.1-cmv-neo scrambled
control) or puromycin (TNKS2 and TRC2 control) se-
lection, or selection for both shRNA transductants in
the dual knockdown study. Knockdown of TNKS1
caused an accumulation of axin 1, as did independent
knockdown of TNKS2, although to a lesser extent; com-
bined TNKS knockdown showed increased stabilization
of axin 1 (Figure 6B). The in vitro growth inhibitory
effects of stable TNKS knockdown are shown (Figure 6C)
and are similar to those observed from siRNA-mediated
transient TNKS repression.

ED1 murine lung cancer cells after dual TNKS1 and
TNKS2 stable knockdown were selected for xenograft

studies in nude mice or tail vein injection into syngeneic
FVB mice. Mice bearing xenografts of the TNKS knock-
down cells showed a decrease in tumor growth rate
(Figure 6D) and increase in time to the specified endpoint
(Figure 6E) as compared to controls. As expected from the
in vitro results, shRNA-mediated knockdown of TNKS1
and TNKS?2 led to a significant decrease in syngeneic tumor
formation after 8 weeks (Additional file 4: Figure S4).

Discussion

Aberrant Wnt signaling has long been associated with
carcinogenesis. Both familial and sporadic colorectal
cancers were among the first to be associated with the
Wnt pathway, as a large percentage of these cases har-
bor driver mutations in APC or f-catenin [13-15,46,47].
Subsequently, deregulation or mutation of components of
the canonical and non-canonical arms of the Wnt pathway
were linked to hematopoietic cancers such as acute mye-
logenous leukemia (AML) [48] and solid tumors including
breast cancer [49,50], ovarian cancer [51], and NSCLC
[52], among other malignancies. The results of our micro-
array studies of cyclin-E driven murine lung adenocarcin-
omas revealed deregulation of specific components of the
Wnt pathway, both canonical and noncanonical, in agree-
ment with prior reports [7,16-19].

TNKS1 and/or TNKS2 levels were elevated in the
majority of the paired tumor and normal murine trans-
genic cyclin E samples. In the three evaluable human lung
adenocarcinoma and normal lung pairs TNKS1 and
TNKS2 levels were either moderately elevated or
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unchanged. There is a paucity of literature on differential
TNKS expression at either the mRNA or the protein level
in cancer. In addition to potential regulation at the mRNA
level, however, the TNKS are known to be regulated post-
transcriptionally. The RING-type E3 ubiquitin ligase
RNF146 has been identified as a PAR-dependent E3 en-
zyme that mediates ubiquitylation of both axin and the

TNKS themselves [53,54]. RNF146 is found in a breast
cancer susceptibility locus at 6422.33, with overexpression
of the locus [55] but not mutation [56] correlated with in-
creased breast cancer risk in both Ashkenazi Jewish and
non-Jewish women. Deregulation of post-transcriptional
TNKS regulators cannot be accounted for in our analysis,
and future studies are planned to assess the association
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between tumorigenicity and TNKS expression at both
mRNA and protein levels across a broader sample set.

We and others have hypothesized [6] that pharmaco-
logical targeting of the Wnt pathway would treat or even
prevent some malignancies, including lung cancer, where
survival remains poor despite current treatments [1].
The development of Wnt pathway pharmacological
inhibitors has proven to be a challenge. The large
protein-protein interaction domains responsible for sig-
nal transduction at the level of the -catenin destruction
complex and B-catenin/TCF/Lef interactions make it dif-
ficult to target these components with small molecules.
Some progress has been made designing compounds
targeting these interactions, but those compounds have
not yet shown in vivo efficacy, as reviewed [57]. Hence,
the discovery of the TNKS as activating enzymes in the
Wnt pathway [58] and the development of tool com-
pounds inhibiting their activity [20,21] were each positive
steps towards small-molecule Wnt pathway inhibition.
Our results with the first generation of TNKS inhibitors,
XAV939 and the IWR-1 compounds, indicate that they
have antiproliferative effects in lung cancer cell lines.

Each cell line examined exhibited a distinct response
profile for each of the three TNKS inhibitors. This likely
resulted from a differing reliance of each on active Wnt
signaling in vitro. In most, but not all cases, the IWR-1
exo enantiomer was less growth inhibitory than was the
IWR-1 endo enantiomer. This was expected from the
difference in ECs, between the compounds [21]. These
effects were found in standard serum concentration cul-
ture conditions. In a recent study in breast cancer cell
lines, growth inhibition by XAV939 was only seen under
conditions of reduced serum [59]. We are currently
examining the effects of different growth conditions on
TNKS inhibitor activity in our lung cancer models. The
lack of effect on apoptosis suggests that the inhibition of
proliferation was due to growth arrest or through a
mechanism other than programmed cell death. As
expected from the noncovalent nature of TNKS inhib-
ition by XAV939 and the IWR-1 isomers as determined
in structure-activity relationship studies [25,60-62], the
growth inhibitory effects of all three compounds washed
out fully.

Despite being closely-related cell lines derived from
adenocarcinomas of mice differing only in the
proteasomal susceptibility of their human cyclin E trans-
gene [31,39], the molecular and growth phenotypic re-
sponses of the ED1 and ED2 cell lines to TNKS
inhibition differed. Specifically, the latter failed to accu-
mulate TNKS2 following inhibitor treatment and was
only growth inhibited by combined TNKS knockdown.
This may speak to stochastic differences in post-
translational regulation of TNKS enzymes, potentially a
result of the specific niche or inflammatory milieu in
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which the original tumors developed in their respective
animals.

Although the BEAS-2B human immortalized bronchial
epithelial cell line was relatively resistant to TNKS inhib-
itors, the ability of TNKS inhibition to growth inhibit
the murine C10 cell line raises concerns regarding thera-
peutic window and toxicity profiles. Although the ori-
ginal reports which described the IWR-1 isoforms and
XAV399 included in vivo inhibition of Wnt-mediated
tailfin regeneration in zebrafish [20,21], to our know-
ledge only a single additional study has used XAV939
successfully in vivo [63]. Further development of TNKS
inhibitors for in vivo use has recently shown promise
[64,65]. In the former study, no overt toxicities were
reported; however, evidence of colon crypt toxicity was
observed in the latter at high doses. Whether a sufficient
therapeutic window exists between TNKS inhibition in
cancer cells and normal cells is still an open question, as
is the toxicity profile of the class.

We provide evidence here that the antineoplastic ef-
fects of TNKS antagonists are through inhibition of the
Wnt pathway and are not solely due to off-target effects
of these inhibitors. Although the TNKS are key regula-
tors of canonical Wnt signaling, they are known to have
other effects. These include the maintenance of telo-
meres and activation of telomerase through binding and
PARsylation of TRF1 [66,67], and directing proper
polymerization of mitotic spindles through PARsylation
of NuMA [23,24]. Our results do not rule out effects of
TNKS inhibition acting in part through these or other
potential mechanisms. However, disruption of cancer
immortalization by inhibition of telomere extension
would exert additional antineoplastic effects. We have
recently reported that targeting chromosome stability in
cancer cells is also an antineoplastic target [40]. In
fact, the inability of constitutively activated exogenous
-catenin to fully rescue growth inhibition due to TNKS
inhibition in ED1 cells may speak to TNKS action in
other pathways, or to off-target effects of the tool com-
pounds themselves. It is also possible that insufficient
exogenous expression was achieved to stoichiometrically
out-compete all of the available destruction complex in
the face of TNKS inhibition.

Our results show in vivo anti-cancer effects of TNKS
knockdown. Combined with the in vitro results with the
described inhibitors, this suggests a potential for clinical
benefit from TNKS inhibition in lung cancer. A clear
limitation of these findings is that xenograft studies in
nude mice do not fully recapitulate the tumorigenic milieu
of the lung, although the pilot syngeneic study presented
here begins to speak to in vivo relevance in the tumor
microenvironment. In addition, genetic knockdown of en-
zymes is likely to have effects distinct from pharmaco-
logical inhibition due to the alteration of protein number
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rather than inhibition of enzymatic activity. To address
both of these points, future studies will treat cyclin E
overexpressing mice [31] with next-generation TNKS in-
hibitors in both chemopreventative and chemotherapeutic
modalities to assess their benefit as single agents or in
combination to prevent or treat lung cancer.

The Wnt pathway is known to contribute to lung can-
cer progression [8,68] and also to metastasis [9]. In
addition, the Wnt pathway is important in the mainten-
ance and self-renewal of stem cell compartments, and
has been linked to the growth of cancer stem cell popu-
lations of breast [69] and lung [70] cancers. Thus, antag-
onizing the Wnt pathway through TNKS inhibition may
serve to overcome drug resistance in the cancer stem
cell niche and thereby reduce outgrowth of these intrin-
sically drug-resistant cells.

A recent publication confirmed key aspects of the hy-
pothesis presented here [71]. Distinct from our candidate-
gene approach, the authors pursued an shRNA-based
screen for synergistic interactions with EGFR inhibition
and uncovered a similar role for TNKS inhibitors in
NSCLC. However, the authors saw very little in vivo anti-
neoplastic effects from 7TNKSI knockdown alone, in
contrast to the significant growth effects we observed fol-
lowing TNKS1 and TNKS2 combined knockdown. We
propose that this discrepancy is likely due to the ability of
TNKS2 to compensate for TNKS1 in long-term knock-
down, as is seen in in vivo xenograft studies lasting up-
wards of 60 days. In addition, the present work sheds
additional light on the actions of the TNKS inhibitors as
single agents and conclusively shows growth inhibitory
effects through inhibition of the canonical Wnt pathway.

Conclusions

We have shown here that specific components of the Wnt
signaling pathway are deregulated in a murine transgenic
cyclin E model of lung adenocarcinoma and in human
lung cancer. Pharmacological or genetic inhibition of
TNKS1 and TNKS2 antagonizes canonical Wnt signaling
and reduces lung cancer proliferation in vitro and in vivo.
Our findings provide evidence for TNKS1 and TNKS2 as
antineoplastic targets in NSCLC. Further studies of these
targets and development of small molecule inhibitors for
clinical testing in lung cancer are warranted.

Additional files

Additional file 1: Figure S1. Table containing all antibodies and
dilutions, sequences for primers used to measure gene expression levels
by gPCR, and siRNA and shRNA sequences used to knock-down TNKS
expression levels.

Additional file 2: Figure S2. Table reporting statistical analysis of main
body figure 2 panels A, B, and C. Percent growth at each drug dosage
was compared to vehicle control via ANOVA with Dunnett's multiple
comparisons post-test.
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Additional file 3: Figure S3. Figure showing washout studies for ED1
and A549 lung cancer cell lines treated with TNKS inhibitors.

Additional file 4: Figure S4. In vivo syngeneic lung cancer tumor
formation from injection of FVB mice with ED1 cells transduced with dual
TNKS knockdown or dual control.
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