14,102 research outputs found
Behind at the Starting Line: Poverty Among Hispanic Infants
In this brief, authors Daniel Lichter, Scott Sanders, and Kenneth Johnson examine the economic circumstances of Hispanic infants using the Census Bureau’s American Community Survey annual microdata files from 2006 through 2010. They report that a disproportionate share of Hispanic infants start life’s race behind the starting line, poor and disadvantaged—an important finding because the proportion of all U.S. births that are Hispanic is growing rapidly. The poverty risk is especially high among rural Hispanic infants and those in new destinations. Despite higher poverty risks, Hispanic infants receive less governmental assistance. High Hispanic infant poverty has immediate and long-term consequences for infants and the nation. Failing to invest in families and children now has long-term consequences because early childhood poverty tends to set into motion a series of lifecycle disadvantages (such as insufficient parenting, bad neighborhoods, underfunded schools, and poor health care) that greatly increases the likelihood of poverty in adulthood. The authors conclude that whether today’s Hispanic children will assimilate into America’s economic mainstream is an open question, but the Hispanic infants who will help reshape America’s future require public policy attention now
Neither Victims Nor Executioners: The Dilemma Of Victim Participation And The Defendant\u27s Right To A fair Trial At The Ineternational Criminal Court
My talk today analyzes victims\u27 [articipation from the defendant\u27s perspective and its impact upon the right to a fair trial at the International Criminal Court (ICC)
Recommended from our members
The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress.
Excessive demands on the protein-folding capacity of the endoplasmic reticulum (ER) cause irremediable ER stress and contribute to cell loss in a number of cell degenerative diseases, including type 2 diabetes and neurodegeneration. The signals communicating catastrophic ER damage to the mitochondrial apoptotic machinery remain poorly understood. We used a biochemical approach to purify a cytosolic activity induced by ER stress that causes release of cytochrome c from isolated mitochondria. We discovered that the principal component of the purified pro-apoptotic activity is the proto-oncoprotein CRK (CT10-regulated kinase), an adaptor protein with no known catalytic activity. Crk(-/-) cells are strongly resistant to ER-stress-induced apoptosis. Moreover, CRK is cleaved in response to ER stress to generate an amino-terminal M(r)~14K fragment with greatly enhanced cytotoxic potential. We identified a putative BH3 (BCL2 homology 3) domain within this N-terminal CRK fragment, which sensitizes isolated mitochondria to cytochrome c release and when mutated significantly reduces the apoptotic activity of CRK in vivo. Together these results identify CRK as a pro-apoptotic protein that signals irremediable ER stress to the mitochondrial execution machinery
Transitions in coral reef accretion rates linked to intrinsic ecological shifts on turbid-zone nearshore reefs
Nearshore coral communities within turbid settings are typically perceived to have limited reef-building capacity. However, several recent studies have reported reef growth over millennial time scales within such environments and have hypothesized that depth-variable community assemblages may act as equally important controls on reef growth as they do in clear-water settings. Here, we explicitly test this idea using a newly compiled chronostratigraphic record (31 cores, 142 radiometric dates) from seven proximal (but discrete) nearshore coral reefs located along the central Great Barrier Reef (Australia). Uniquely, these reefs span distinct stages of geomorphological maturity, as reflected in their elevations below sea level. Integrated age-depth and ecological data sets indicate that contemporary coral assemblage shifts, associated with changing light availability and wave exposure as reefs shallowed, coincided with transitions in accretion rates at equivalent core depths. Reef initiation followed a regional ∼1 m drop in sea level (1200–800 calibrated yr B.P.) which would have lowered the photic floor and exposed new substrate for coral recruitment by winnowing away fine seafloor sediments. We propose that a two-way feedback mechanism exists where past growth history influences current reef morphology and ecology, ultimately driving future reef accumulation and morphological change. These findings provide the first empirical evidence that nearshore reef growth trajectories are intrinsically driven by changes in coral community structure as reefs move toward sea level, a finding of direct significance for predicting the impacts of extrinsically driven ecological change (e.g., coral-algal phase shifts) on reef growth potential within the wider coastal zone on the Great Barrier Reef
Paper Session II-B - Solid State Oxygen Sensor Development
To anticipate future long-duration mission needs for life support sensors, we explored the feasibility of using thin-film metal-oxide semiconductors. The objective of this task was to develop gas sensors for life support applications which would be suitable for long-duration missions. Metal oxides, such as ZnO, SnO2, and TiO2 have been shown to react with oxygen molecules. Oxygen lowers the metal oxide\u27s electrical resistance. Critical to the performance is the application of the oxide in a thin film on an inert substrate: the thinner the film, the more readily the oxygen penetration and hence the more rapid and sensitive the sensor. Metal oxides are not limited to oxygen detection, rather, oxides offer detection and quantification applications to the complete range of gases of interest, not only for life support systems, but for propellants as well
Schistosoma haematobium infection and Buruli ulcer
No abstract available
A Multiparameter Degeneracy in Microlensing Events with Extreme Finite Source Effects
For microlenses with sufficiently low mass, the angular radius of the source star can be much larger than the angular Einstein ring radius of the lens. For such extreme finite source effect (EFSE) events, finite source effects dominate throughout the duration of the event. Here, we demonstrate and explore a continuous degeneracy between multiple parameters of such EFSE events. The first component in the degeneracy arises from the fact that the directly observable peak change of the flux depends on both the ratio of the angular source radius to the angular Einstein ring radius and the fraction of the baseline flux that is attributable to the lensed source star. The second component arises because the directly observable duration of the event depends on both the impact parameter of the event and the relative lens-source proper motion. These two pairwise degeneracies become coupled when the detailed morphology of the light curve is considered, especially when including a limb-darkening profile of the source star. We derive these degeneracies mathematically through analytic approximations and investigate them further numerically with no approximations. We explore the likely physical situations in which these mathematical degeneracies may be realized and potentially broken. As more and more low-mass lensing events (with ever decreasing Einstein ring radii) are detected with improving precision and increasing cadence from microlensing surveys, one can expect that more of these EFSE events will be discovered. In particular, the detection of EFSE microlensing events could increase dramatically with the Roman Space Telescope Galactic Bulge Time Domain Survey
Global Journalist: As the world eyes Iraq, Venezula and Ecuador face challenges
In this January 9, 2003 episode of Global Journalist, guest-host Byron Scott interviews four panelists about the political strife plaguing Venezuela and Ecuador at a time when many eyes were only turned to Iraq
An institutional perspective on the impact of recent antibiotic exposure on length of stay and hospital costs for patients with gram-negative sepsis
<p>Abstract</p> <p>Background</p> <p>Prior antibiotic exposure has been associated with the emergence of antibiotic resistance in subsequent bacterial infections, whose outcomes are typically worse than similar infections with more antibiotic susceptible infections. The influence of prior antibiotic exposure on hospital length of stay (LOS) and costs in patients with severe sepsis or septic shock attributed to Gram-negative bacteremia has not been previously examined.</p> <p>Methods</p> <p>A retrospective cohort study of hospitalized patients (January 2002-December 2007) was performed at Barnes-Jewish Hospital, a 1200-bed urban teaching hospital. Patients with Gram-negative bacteremia complicated by severe sepsis or septic shock had data abstraction from computerized medical records. We examined a consecutive cohort of 754 subjects (mean age 59.3 ± 16.3 yrs, mean APACHE II 23.7 ± 6.7).</p> <p>Results</p> <p><it>Escherichia coli </it>(30.8%), <it>Klebsiella pneumoniae </it>(23.2%), and <it>Pseudomonas aeruginosa </it>(17.6%) were the most common organisms isolated from blood cultures. 310 patients (41.1%) had exposure to antimicrobial agents in the previous 90 days. Patients with recent antibiotic exposure had greater inappropriate initial antimicrobial therapy (45.4% v. 21.2%; p < 0.001) and hospital mortality (51.3% v. 34.0%; p < 0.001) compared to patients without recent antibiotic exposure. The unadjusted median LOS (25<sup>th </sup>percentile, 75<sup>th </sup>percentile) following sepsis onset in patients with prior antimicrobial exposure was 13.0 days (5.0 days, 24.0 days) compared to 8.0 days (5.0 days, 14.0 days) in those without prior antimicrobial exposure (p < 0.001). In a Cox model controlling for multiple confounders, prior antibiotic exposure independently correlated with remaining hospitalized (Adjusted hazard ratio: 1.473, 95% CI: 1.297-1.672, p < 0.001). Adjusting for potential confounders indicated that prior antibiotic exposure independently increased median attributable LOS by 5.0 days. Similarly, total hospital costs following sepsis onset was significantly greater among patients with prior antimicrobial exposure (median values: 21,329; p < 0.001).</p> <p>Conclusions</p> <p>Recent antibiotic exposure is associated with increased LOS and hospital costs in Gram-negative bacteremia complicated by severe sepsis or septic shock. Clinicians and hospital administrators should consider the potential impact of recent antibiotic exposure when formulating empiric treatment decisions for patients with serious infections attributed to Gram-negative bacteria.</p
- …