89 research outputs found

    Effects of Lean Beef Supplementation on Iron Status, Body Composition and Performance of Collegiate Distance Runners

    Get PDF
    Iron deficiency is prevalent among endurance athletes, particularly females. Low iron may compromise oxygen delivery and physical performance. Vegetarianism, desire for convenience, and perceived health risks associated with red meat contribute to low bioavailable iron intakes. The purpose of this study was to examine if lean beef supplementation would maintain iron status, improve body composition and increase performance of distance runners after 8 weeks. Twenty-eight (14 female) Division-I cross-country runners were stratified by iron status, use of iron supplements, and gender, and randomized into a control (n = 14) and intervention group. All participants maintained their typical diet and consumed a daily multivitamin, while the intervention group consumed 9 ounces of lean beef weekly. Dietary intake (total iron, heme-iron, protein, zinc), body composition, VO2max, and iron status (hemoglobin, hematocrit, serum iron, serum ferritin, total iron binding capacity [TIBC]) were measured at baseline and post-intervention. The intervention group had greater intakes of total and heme-iron. There were no group differences in amino acids, protein, or calories. Both groups had a significant body fat increase and lean mass decease over time. There was a significant VO2max in- crease over time in both groups. There were no group differences due to the intervention in serum ferritin, hemoglobin, serum iron, and TIBC. There was a significant difference in hematocrit between groups as a result of the intervention. In conclusion, increasing bioavailable iron from red meat may have effects on body composition and maintenance of blood iron markers; however, its direct impact on performance among endurance athletes is unclear

    Time course of changes in torque and neuromuscular parameters during a sustained isometric forearm flexion task to fatigue anchored to a constant rating of perceived exertion

    Get PDF
    Objective: This study examined the time course of changes in torque and electromyographic (EMG) and mechanomyographic (MMG) responses during a sustained isometric task anchored to a constant perception of exertion (RPE). Methods: Twelve college-aged men performed an isometric forearm flexion task to failure anchored to RPE=7 (OMNI-RES scale). The amplitude (AMP) and frequency (MPF) of the EMG and MMG signals from the biceps brachii were recorded. Repeated measures ANOVAs were used to examine differences for the normalized (%MVIC) torque and neuromuscular parameters. Results: The time to task failure (TTF) was 678.0±468.1s. Torque decreased significantly (p\u3c0.001, ηp 2=0.774) across time and all subjects reduced torque to zero. Post-hoc comparisons indicated that the torque values from 20–100% TTF were less than the value at 10% TTF. There were no significant (p\u3e0.05) changes from 10–100% TTF for the EMG and MMG parameters. Conclusion: We hypothesize that RPE was maintained by various mechanisms throughout the task: group III/IV afferent neurons, adequate blood flow, and a combination of reduced contractile efficiency, collective afferent feedback (group III/IV afferents) from muscles involved with forearm flexion, and motivation that resulted in an initial decrease, plateau, and final decline in torque to zero, respectively

    The Effects of Anchor Schemes on Performance Fatigability, Neuromuscular Responses and the Perceived Sensations That Contributed to Task Termination

    Get PDF
    The present study examined the effect of anchor schemes on the time to task failure (TTF), performance fatigability, neuromuscular responses, and the perceived sensations that contributed to task termination following the sustained, isometric forearm flexion tasks. Eight women completed sustained, isometric forearm flexion tasks anchored to RPE = 8 (RPEFT) and the torque (TRQFT) that corresponded to RPE = 8. The subjects performed pre-test and post-test maximal isometric contractions to quantify performance fatigability and changes in electromyographic amplitude (EMG AMP) and neuromuscular efficiency (NME). In addition, the subjects completed a post-test questionnaire (PTQ) to quantify the contributions of perceived sensations to task termination. Repeated measure ANOVAs were used to assess the mean differences for TTF, performance fatigability, and neuromuscular responses. Wilcoxon Signed Rank Tests were used to assess the differences between anchor schemes for the average values from the PTQ item scores. For TTF, the RPEFT was longer than the TRQFT (174.9 ± 85.6 vs. 65.6 ± 68.0 s; p = 0.006). Collapsed across the anchor scheme, there were decreases in torque (23.7 ± 5.5 Nm vs. 19.6 ± 4.9 Nm; p \u3c 0.001) and NME (1.00 ± 0.00 vs. 0.76 ± 0.15; p = 0.003). There were no significant (p \u3e 0.577) changes for EMG AMP. For the PTQ, there were no differences (p \u3e 0.05) between anchor schemes. There were, however, inter-individual differences in the response scores. The current findings indicated that performance fatigability was likely due to peripheral fatigue (based on NME), not central fatigue (based on EMG AMP). Furthermore, the use of a PTQ may serve as a simple tool to assess the contributions of perceived sensations to task termination

    Fatiguing Joint Angle Does Not Influence Torque and Neuromuscular Responses Following Sustained, Isometric Forearm Flexion Tasks Anchored to Perceptual Intensity in Men

    Get PDF
    This study examined the effects of joint angle (JA) on maximal voluntary isometric contraction (MVIC) and neuromuscular responses following fatiguing tasks anchored to RPE. Nine men (mean ± SD: age = 20.7 ± 1.2 yrs) performed forearm flexion MVICs at elbow JAs of 75o and 125o before and after sustained, isometric forearm flexion tasks to failure at fatiguing joint angles (FJA) of 75o and 125o anchored to RPE = 8. The amplitude and frequency of the electromyographic and mechanomyographic signals were recorded. Neuromuscular efficiency was calculated by dividing normalized torque by normalized electromyographic amplitude. A dependent t-test was used to assess the mean difference for time to task failure (TTF) between FJA. Repeated measure ANOVAs were used to assess mean differences for pre-test to post-test MVIC and neuromuscular responses. There was no significant difference between FJA for TTF (p = 0.223). The MVIC (collapsed across FJA and MVIC JA) decreased from pre-test to post-test (51.1 ± 5.0 vs. 45.3 ± 5.6 Nm, p \u3c 0.001). Normalized neuromuscular parameters remained unchanged (p \u3e 0.05). The FJA resulted in similar torque and neuromuscular responses, and the decreases in MVIC were not tracked by changes in the neuromuscular parameters. Thus, the neuromuscular parameters were not sensitive to fatigue, and pre-test to post-test measures may be compared between different FJA

    Performance Fatigability and Neuromuscular Responses Are Not Joint Angle Specific Following a Sustained Isometric Forearm Flexion Task Anchored to a High Perceptual Intensity in Women

    Get PDF
    Objectives: To examine the effects of joint angle (JA) on maximal voluntary isometric contractions (MVIC) and neuromuscular responses following a sustained, isometric forearm flexion task anchored to a rating of perceived exertion (RPE) of 8 (RPE=8). Methods: Nine women (age: 20.7±2.9 yrs; height: 168.8±7.2 cm; body mass: 66.3±6.8 kg) performed 2,3s forearm flexion MVICs at JAs of 75°, 100°, and 125° prior to and following a sustained, isometric forearm flexion task anchored to RPE=8 to task failure (torque reduced to zero) at JA100. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from the biceps brachii. Results: The MVIC at JA100 (collapsed across Time) was significantly greater (pppp\u3e0.05) differences between Time or JAs. Pre-test neuromuscular efficiency (normalized MVIC/normalized EMG AMP) was significantly greater (p=0.005) than post-test. Conclusion: Following a sustained, isometric forearm flexion task anchored to RPE=8 at JA100, the fatigue-induced MVIC and neuromuscular responses were not affected by JA

    Fatiguing Joint Angle Does Not Influence Torque and Neuromuscular Responses Following Sustained, Isometric Forearm Flexion Tasks Anchored to Perceptual Intensity in Men

    Get PDF
    This study examined the effects of joint angle (JA) on maximal voluntary isometric contraction (MVIC) and neuromuscular responses following fatiguing tasks anchored to RPE. Nine men (mean ± SD: age = 20.7 ± 1.2 yrs) performed forearm flexion MVICs at elbow JAs of 75o and 125o before and after sustained, isometric forearm flexion tasks to failure at fatiguing joint angles (FJA) of 75o and 125o anchored to RPE = 8. The amplitude and frequency of the electromyographic and mechanomyographic signals were recorded. Neuromuscular efficiency was calculated by dividing normalized torque by normalized electromyographic amplitude. A dependent t-test was used to assess the mean difference for time to task failure (TTF) between FJA. Repeated measure ANOVAs were used to assess mean differences for pre-test to post-test MVIC and neuromuscular responses. There was no significant difference between FJA for TTF (p = 0.223). The MVIC (collapsed across FJA and MVIC JA) decreased from pre-test to post-test (51.1 ± 5.0 vs. 45.3 ± 5.6 Nm, p \u3c 0.001). Normalized neuromuscular parameters remained unchanged (p \u3e 0.05). The FJA resulted in similar torque and neuromuscular responses, and the decreases in MVIC were not tracked by changes in the neuromuscular parameters. Thus, the neuromuscular parameters were not sensitive to fatigue, and pre-test to post-test measures may be compared between different FJA

    Perceptual Fatigability and Neuromuscular Responses During a Sustained, Isometric Forearm Flexion Muscle Action Anchored to a Constant Level of Perceived Exertion

    Get PDF
    Objective: The purpose of the present study was to examine the fatigue-induced changes in torque, and the electromyographic (EMG) and mechanomyographic (MMG) responses during a sustained submaximal, isometric forearm flexion muscle action anchored to a constant rating of perceived exertion (RPE). Methods: Eleven women (mean ± SD: age = 20.5 ± 1.9 yrs.; height = 169.9 ± 6.6 cm; body mass = 73.2 ± 15.9 kg) performed 2, 3s forearm flexion maximal voluntary isometric contractions (MVIC) before a sustained isometric muscle action anchored to RPE = 7 until task failure (defined as torque that would require RPE \u3e 7, or the torque was reduced to zero). The EMG amplitude (AMP), EMG mean power frequency (MPF), MMG AMP, and MMG MPF signals from the biceps brachii (BB) were recorded. Regression analyses were conducted to examine the torque and neuromuscular responses vs. time relationships. Results: The percent decline in torque during the sustained isometric muscle action was 95.69 ± 6.54 %. There was a significant (p \u3c 0.001; R = -0.998), negative quadratic EMG AMP relationship and a significant (p \u3c 0.046; R = 0.952), positive quadratic MMG AMP relationship vs. Time, but no significant (p \u3e 0.05) relationships for EMG MPF or MMG MPF vs. Time. Conclusion: The findings suggested that torque was initially regulated by an anticipatory feedforward mechanism and continually adjusted due to afferent feedback. In addition, substantial inter-individual, as well as differences between the individual and composite responses, were observed for the neuromuscular response patterns

    Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG.

    Get PDF
    Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H(+) Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features

    New models and online calculator for predicting non-sentinel lymph node status in sentinel lymph node positive breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current practice is to perform a completion axillary lymph node dissection (ALND) for breast cancer patients with tumor-involved sentinel lymph nodes (SLNs), although fewer than half will have non-sentinel node (NSLN) metastasis. Our goal was to develop new models to quantify the risk of NSLN metastasis in SLN-positive patients and to compare predictive capabilities to another widely used model.</p> <p>Methods</p> <p>We constructed three models to predict NSLN status: recursive partitioning with receiver operating characteristic curves (RP-ROC), boosted Classification and Regression Trees (CART), and multivariate logistic regression (MLR) informed by CART. Data were compiled from a multicenter Northern California and Oregon database of 784 patients who prospectively underwent SLN biopsy and completion ALND. We compared the predictive abilities of our best model and the Memorial Sloan-Kettering Breast Cancer Nomogram (Nomogram) in our dataset and an independent dataset from Northwestern University.</p> <p>Results</p> <p>285 patients had positive SLNs, of which 213 had known angiolymphatic invasion status and 171 had complete pathologic data including hormone receptor status. 264 (93%) patients had limited SLN disease (micrometastasis, 70%, or isolated tumor cells, 23%). 101 (35%) of all SLN-positive patients had tumor-involved NSLNs. Three variables (tumor size, angiolymphatic invasion, and SLN metastasis size) predicted risk in all our models. RP-ROC and boosted CART stratified patients into four risk levels. MLR informed by CART was most accurate. Using two composite predictors calculated from three variables, MLR informed by CART was more accurate than the Nomogram computed using eight predictors. In our dataset, area under ROC curve (AUC) was 0.83/0.85 for MLR (n = 213/n = 171) and 0.77 for Nomogram (n = 171). When applied to an independent dataset (n = 77), AUC was 0.74 for our model and 0.62 for Nomogram. The composite predictors in our model were the product of angiolymphatic invasion and size of SLN metastasis, and the product of tumor size and square of SLN metastasis size.</p> <p>Conclusion</p> <p>We present a new model developed from a community-based SLN database that uses only three rather than eight variables to achieve higher accuracy than the Nomogram for predicting NSLN status in two different datasets. </p

    A new measure for multi-professional medical team communication: design and methodology for multilingual measurement development

    Get PDF
    BackgroundAs implementation science in global health continues to evolve, there is a need for valid and reliable measures that consider diverse linguistic and cultural contexts. A standardized, reproducible process for multilingual measure development may improve accessibility and validity by participants in global health settings. To address this need, we propose a rigorous methodology for multilingual measurement development. We use the example of a novel measure of multi-professional team communication quality, a determinant of implementation efforts.MethodsThe development and translation of this novel bilingual measure is comprised of seven steps. In this paper, we describe a measure developed in English and Spanish, however, this approach is not language specific. Participants are engaged throughout the process: first, an interprofessional panel of experts and second, through cognitive interviewing for measure refinement. The steps of measure development included: (1) literature review to identify previous measures of team communication; (2) development of an initial measure by the expert panel; (3) cognitive interviewing in a phased approach with the first language (English); (4): formal, forward-backward translation process with attention to colloquialisms and regional differences in languages; (5) cognitive interviewing repeated in the second language (Spanish); (6) language synthesis to refine both instruments and unify feedback; and (7) final review of the refined measure by the expert panel.ResultsA draft measure to assess quality of multi-professional team communication was developed in Spanish and English, consisting of 52 questions in 7 domains. This measure is now ready for psychometric testing.ConclusionsThis seven-step, rigorous process of multilingual measure development can be used in a variety of linguistic and resource settings. This method ensures development of valid and reliable tools to collect data from a wide range of participants, including those who have historically been excluded due to language barriers. Use of this method will increase both rigor and accessibility of measurement in implementation science and advance equity in research and practice
    corecore