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Original Article

Performance Fatigability and Neuromuscular Responses 
Are Not Joint Angle Specific Following a Sustained 
Isometric Forearm Flexion Task Anchored to a High 
Perceptual Intensity in Women

Jocelyn E. Arnett1, Robert W. Smith1, Tyler J. Neltner1, John Paul V. Anders2, Dolores G. Ortega1,  
Terry J. Housh1, Richard J. Schmidt1, Glen O. Johnson1

1Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, USA;
2Department of Human Sciences, The Ohio State University, Columbus, USA

Introduction

Muscle fatigue limits exercise performance1 and has been 
described2 as “…an acute impairment of performance that 
includes both an increase in the perceived effort necessary 
to exert a desired force and an eventual inability to produce 
this force” (p.1631). Thus, both perceived fatigability and 

performance fatigability can influence task performance. 
Based on the model of Kluger et al.3, Enoka and Duchateau4 
proposed a taxonomy of fatigue for human performance 
where perceived fatigability and performance fatigability 
are described as two separate domains that can influence 
each other3. Perceived fatigability involves the changes 
in sensations associated with performing a fatiguing task 
and can be influenced by modulating factors related to 
homeostasis and the psychological state of the individual4. 
Performance fatigability includes fatigue-induced changes 
in an objective measure of performance, such as a maximal 
voluntary isometric contraction (MVIC), and is influenced by 
modulating factors associated with contractile function and 
muscle activation4. Therefore, it is important to examine the 
interactions between perceived fatigability and performance 
fatigability to understand the task-dependent causes of 
fatigue4.

Abstract

Objectives: To examine the effects of joint angle (JA) on maximal voluntary isometric contractions (MVIC) and 
neuromuscular responses following a sustained, isometric forearm flexion task anchored to a rating of perceived 
exertion (RPE) of 8 (RPE=8). Methods: Nine women (age: 20.7±2.9 yrs; height: 168.8±7.2 cm; body mass: 66.3±6.8 
kg) performed 2,3s forearm flexion MVICs at JAs of 75°, 100°, and 125° prior to and following a sustained, isometric 
forearm flexion task anchored to RPE=8 to task failure (torque reduced to zero) at JA100. Electromyographic (EMG) and 
mechanomyographic (MMG) signals were recorded from the biceps brachii. Results: The MVIC at JA100 (collapsed across 
Time) was significantly greater (p<0.05) than JA75 and JA125. The pre-test MVIC was significantly greater (p<0.001) 
than the post-test. For EMG amplitude (AMP) and EMG mean power frequency (MPF), pre-test values were significantly 
greater (p<0.05) than the post-test values, with no differences between JAs. For MMG AMP and MMG MPF, there were no 
significant (p>0.05) differences between Time or JAs. Pre-test neuromuscular efficiency (normalized MVIC/normalized 
EMG AMP) was significantly greater (p=0.005) than post-test. Conclusion: Following a sustained, isometric forearm flexion 
task anchored to RPE=8 at JA100, the fatigue-induced MVIC and neuromuscular responses were not affected by JA. 
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The interactions between perceived fatigability and 
performance fatigability have previously been examined 
during sustained, isometric fatiguing tasks anchored to torque 
or force by assessing fatigue-induced changes in ratings of 
perceived exertion (RPE) and neuromuscular responses, 
including the amplitude (AMP) and mean power frequency 
(MPF) of electromyographic (EMG) and mechanomyographic 
(MMG) signals5–7. Recent studies5,8–18, however, have 
examined the interactions between perceived fatigability and 
performance fatigability during tasks anchored to perceptual 
intensities based on the RPE Clamp Model of Tucker1. Fatigue-
induced neuromuscular responses when anchored to torque 
or force are typically characterized by increases in EMG AMP 
and MMG AMP, but decreases in EMG MPF and MMG MPF, 
which reflect the ability to maintain the prescribed torque19,20. 
Neuromuscular responses when anchored to RPE, however, 
are less consistent and likely represent the ability to maintain 
the prescribed RPE11,13,15. 

Joint angle-specific force production capabilities and 
neuromuscular responses have been attributed to the 
degree of actin and myosin cross-bridge overlap21,22. In the 
middle of a range of motion, the overlap of actin and myosin 
is optimal, while at smaller and larger joint angles there are 
disadvantageous overlaps of actin and myosin22,23. It has 
been suggested that the greatest force production during 
isometric forearm flexion tasks occurs between elbow joint 
angles of 90° and 120° with decreases toward each end of 
the range of motion24–27. It is unclear, however, if the joint 
angle at which an MVIC is performed can affect the fatigue-
induced torque and neuromuscular responses following 
sustained, isometric forearm flexion tasks anchored to a 
constant perceptual intensity. In addition, the torque and 
neuromuscular responses following a fatiguing isometric task 
anchored to a constant RPE at an elbow joint angle of 100° 
have previously been examined in men8. Due to previously 
identified sex-specific differences in fatigue, however, it 
is unknown if these responses are similar in women28. 
Therefore, the purpose of the present study was to utilize 
the RPE Clamp Model of Tucker1 to examine the effects of 

joint angle on MVIC and neuromuscular responses following 
a sustained, isometric forearm flexion task anchored to an 
RPE of 8 at an elbow joint angle of 100° in women. Based on 
previous studies21–23, it was hypothesized that there would be 
joint angle-specific differences in MVIC torque production. In 
addition, based on the recent study of men by Arnett et al.8, 
it was hypothesized that: 1) There would be no joint angle-
specific differences in performance fatigability; and 2) there 
would be joint angle-specific decreases in EMG AMP, but not 
EMG MPF, MMG AMP, or MMG MPF.

Materials and Methods

Subjects

Nine women (Mean±SD: age: 20.7±2.9 yrs; height: 
168.8±7.2 cm; body mass: 66.3±6.8 kg) volunteered to 
participate in this study. The subjects were university students 
and recreationally active29, which included participating 
in resistance and/or aerobic exercise at least 3 d∙wk-1. In 
addition, all subjects were right hand dominant (based on 
throwing preference), and all testing was performed using 
the dominant arm. The subjects were free of upper body 
pathologies that would affect performance. Based on the 
previously reported performance fatigability data of Keller 
et al.5, a priori sample size calculation (G*Power version 
3.1.9.4, Düsseldorf, Germany) indicated that a power of 0.96 
required 9 subjects. The subjects in the present study were 
part of a large multiple independent and dependent variable 
investigation8–10,18,30,31, but none of the current data have 
been previously published. All subjects completed a Health 
History Questionnaire and signed a written Informed Consent 
document prior to testing.

Time Course of Procedures 

The subjects visited the laboratory on two occasions 
(orientation session and testing visit) separated by 24–
96 hours. The initial visit was an orientation session, and 
the next was a testing visit that included the standardized 

Table 1. The time course of procedures.

Orientation Session Testing Visit

1. Informed Consent.
2. Health History Questionnaire.
3. Age, height, and body mass recorded.
4. Familiarized with testing procedures.
5. Read the standardized anchoring instructions (OMNI-RES scale).
6. �Standardized warm-up: 4, 3 s submaximal (50-75% of max 

effort) isometric forearm flexion muscle actions.
7. �2, 3 s isometric forearm flexion MVICs at elbow joint angles of 75°, 

100°, and 125° to set a perceptual anchor of RPE = 10. Lay quietly 
and relaxed to set a perceptual anchor of RPE = 0.

8. �Brief (~1 min) sustained isometric task anchored to RPE=8 at an 
elbow joint angle of 100°.

1. Standardized warm-up.
2. Read the standardized anchoring instructions (OMNI-RES scale).
3. �Pre-test: 2, 3 s MVICs at elbow joint angles of 75°, 100°, and 

125°, in a randomized order.
4. �Sustained, isometric forearm flexion task anchored to RPE=8 

(OMNI-RES scale) performed at an elbow joint angle of 100° until 
task failure.

5. �Post-test: 2, 3 s MVICs at elbow joint angles of 75°, 100°, and 
125°, in a randomized order.
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warm-up, pre- and post-test MVIC measurements at 
elbow joint angles of 75° (JA75), 100° (JA100), and 
125° (JA125), and a sustained, isometric forearm flexion 
task of the dominant arm (based on throwing preference) 
anchored to an RPE of 8 (RPE=8) at JA100 (Table 1). During 
the sustained forearm flexion task, EMG and MMG signals 
were simultaneously recorded from the biceps brachii (BB) 
muscle of the dominant arm.

OMNI-RES Scale Standardized Anchoring Instructions

The anchoring instructions used in the present study for 
the sustained, isometric tasks anchored to RPE=8 were 
originally developed by Gearhart et al.32 as a standardized 
method to gauge training intensity during lower body tasks 
and were modified for use during isometric forearm flexion 
tasks15. To promote the proper use of the OMNI-RES scale, 
the following standardized anchoring instructions were read 
to each subject during the familiarization visit and prior to 
the sustained, isometric task anchored to RPE=8: “You will be 
asked to set an anchor point for both the lowest and highest 
values on the perceived exertion scale. To set the lowest 
anchor, you will be asked to lay quietly without contracting 
your forearm flexor muscles to familiarize yourself with a RPE 
of zero. Following this, you will be asked to perform a MVIC 
to familiarize yourself with an RPE of 10. When instructed to 
match a perceptual value corresponding to the OMNI-RES 
scale, perceived exertion should be relative to these defined 
anchors.”

Orientation Session 

During the orientation session, the subjects’ age, height, 
and body mass values were recorded. In addition, the 
subjects were oriented to the testing position on the isokinetic 
dynamometer (Cybex II, Cybex International Inc. Medway, 
MA, USA) in accordance with the Cybex II user’s manual on an 
upper body exercise table (UBXT) with the lateral epicondyle 
of the humerus of the dominant arm aligned with the lever 
arm of the dynamometer. The subjects were familiarized 
with the 0–10 OMNI-RES scale33 and read the standardized 
OMNI-RES instructions that were also used during the testing 
visits33,34. The OMNI-RES (0–10) RPE scale has been shown 
to be valid and reliable for the quantification of perception 
of exertion during resistance exercise33. The subjects then 
completed the standardized warm-up as well as 2, 3 s 
forearm flexion MVICs at JA75, JA100, and JA125 to set a 
perceptual anchor corresponding to RPE=10. The subjects 
were then asked to lay quietly and relaxed on the table to 
set a perceptual anchor corresponding to RPE=0. Lastly, the 
subjects performed a brief (approximately 1 min), sustained, 
isometric task anchored to RPE=8 at JA100 to become 
familiarized with the testing and anchoring procedures.

Testing Visit

During the RPE=8 testing visit, the subjects were positioned 
in accordance with the Cybex II (Cybex II, Cybex International 

Inc. Medway, MA) user’s manual. Once positioned, the subjects 
performed the standardized warm-up, followed by 1 min of 
rest. The investigators then read the OMNI-RES instructions 
relating to the anchoring procedures to the subjects. The 
subjects then performed 2, 3 s forearm flexion pre-test 
MVICs on a calibrated dynamometer at JA75, JA100, and 
JA125 in a randomized order. Strong verbal encouragement 
was provided during each MVIC trial. The MVICs at JA100 
also served to remind the subjects of the perceptual anchor 
corresponding to RPE=10. The elbow joint angles of 75°, 
100°, and 125° for the MVIC measurements were selected to 
reflect a range of isometric torque production25. Following the 
pre-test MVIC trials, the sustained, isometric forearm flexion 
task anchored to RPE=8 (OMNI-RES scale) was performed 
at JA100. During the sustained isometric task at RPE=8, 
the subjects were unaware of torque and elapsed time to 
avoid pacing strategies5,35. The RPE=8 trial was sustained 
until task failure, which was defined as torque being reduced 
to zero. During the RPE=8 trial, the subjects were free to 
adjust torque production to maintain the required RPE=8. In 
addition, during the sustained isometric task, the subjects 
were reminded to be attentive to sensations such as strain, 
intensity, discomfort, and fatigue felt during the contraction 
to maintain appropriate levels of exertion34,36. Furthermore, 
the subjects were continuously advised that there were no 
incorrect contractions or perceptions and were reminded 
to relate levels of exertion to the previously set anchors. 
Throughout the sustained isometric task, the subjects were 
asked for their RPE every 30 s to assure compliance with 
RPE=8. At failure, the time to task failure (TTF) was recorded. 
Immediately after task failure, the post-test MVIC trials were 
performed at JA75, JA100, and JA125 in a manner identical 
to the pre-test MVIC trials.

Electromyographic, Mechanomyographic, and Torque 
Acquisition

During the testing visit, bipolar (30-mm center-to-
center) EMG electrodes (pre-gelled Ag/AgCl, AccuSensor; 
Lynn Medical, Wixom, MI, USA) were attached to the BB of 
the dominant arm based on the recommendations of the 
Surface Electromyography for the Non-Invasive Assessment 
of Muscles37. Prior to electrode placement, the skin was 
shaved, carefully abraded, and cleaned with alcohol. The 
active electrodes were placed over the BB at one-third of 
the distance between the medial acromion process and the 
antecubital fossa. A reference electrode was also placed 
on the styloid process of the radius of the forearm. Using 
double-sided adhesive tape, a miniature accelerometer 
(Entras EGAS FT 10, bandwidth 0-200 Hz, dimensions 1.0 
x 1.0 x 0.5 cm, mass 1.0 g, sensitivity 550.4 mV∙g-1) was 
placed between the bipolar EMG electrodes to detect the 
MMG signals for the BB muscle.

The raw EMG and MMG signals were digitized at 2000 
samples/second with a 12-bit analog-to-digital converter 
(Model MP150; Biopac Systems, Inc.) and stored on a 
personal computer (HP Laptop Model 14-dk1013dx HP 
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Inc., Palo Alto, CA, USA) for analyses. The EMG signals 
were amplified (gain: ×1000) using differential amplifiers 
(EMG2-R Bionomadix, Biopac Systems, Inc. Goleta, 
CA, USA; bandwidth—10-500 Hz). The EMG and MMG 
signals were digitally bandpass filtered (fourth-order 
Butterworth) at 10-500 Hz and 5-100 Hz, respectively. 
Signal processing was performed using custom programs 
written with LabVIEW programming software (version 
20.0f1, National Instruments, Austin, TX, USA). A 1 s 
epoch from the center of the 3 s forearm flexion MVICs 
with the greatest torque production was used to calculate 
the AMP (root mean square) for EMG (µVrms) and MMG 
(m•s-2) signals, as well as the mean power frequency 
(MPF in Hz) for both signals. The MPF was selected to 
represent the power density spectrum and was calculated 
as described by Kwatny et al.38. The neuromuscular 
efficiency (NME) was calculated by dividing the normalized 
MVIC torque by the normalized EMG AMP14,39. The torque 
signals were sampled from the digital torque of the Cybex 
II dynamometer and stored on a personal computer (HP 
Laptop Model 14-dk1013dx HP Inc., Palo Alto, CA, USA) 
for analyses. 

Statistical Analysis

The mean differences for pre-test versus post-test MVIC 
and neuromuscular parameters (EMG AMP, EMG MPF, MMG 
AMP, and MMG MPF, and NME values) were determined using 
six, separate 2 (Time: Pre-test and Post-test) x 3 (Joint 
Angle: 75°, 100°, and 125°) repeated measures ANOVAs. An 
alpha value of p≤0.05 was used for all ANOVAs. Significant 
interactions were decomposed with follow-up ANOVAs and 
post-hoc, Bonferroni corrected, paired t-tests40,41. Effect 
sizes were reported as partial eta squared (η

p
2) and Cohen’s 

d for the ANOVAs and pairwise comparisons, respectively. 
All statistical analyses were completed in IBM SPSS v. 28 
(Armonk, NY, USA).

Results

The TTF values for the fatiguing task at JA100 are 
presented in Table 2.

Maximal Voluntary Isometric Contraction

The results of the repeated measures ANOVA for MVIC 
indicated no significant 2-way (p=0.313, η

p
2=0.135) 

interaction. There were, however, significant main effects 
for Time (p<0.001, η

p
2=0.918) and Joint Angle (p<0.001, 

η
p
2=0.829). The main effect for Time (collapsed across Joint 

Angle) indicated that the pre-test MVIC value (27.9±6.1 
Nm) was significantly greater (p<0.001, d=1.059) than the 
post-test MVIC value (21.8±5.4 Nm) (Figure 1). The follow-
up pairwise comparisons for the main effect for Joint Angle 
(collapsed across Time) indicated that JA100 (27.8±5.3 Nm) 
was significantly greater (p=0.003, d=0.454; Bonferroni 
corrected alpha=0.0167) than JA75 (25.4±4.9 Nm) and 
JA125 (21.4±5.0 Nm; p<0.001, d=1.236), and JA75 was 
significantly greater (p=0.002, d=0.825) than JA125 
(Figure 2).

Electromyographic Amplitude

The results of the repeated measures ANOVA for EMG 
AMP indicated no significant 2-way (p=0.147, η

p
2=0.213) 

interaction and no significant (p=0.990, η
p
2=0.001) main 

effect for Joint Angle. There was, however, a significant main 
effect for Time (p<0.001, η

p
2=0.768). The main effect for 

Time (collapsed across Joint Angle) indicated that the pre-
test EMG AMP value (754.9±304.9 µVrms) was significantly 
greater (p<0.001, d=0.261) than the post-test EMG AMP 
value (675.5±303.4 µVrms) (Figure 1).

Electromyographic Mean Power Frequency

The results of the repeated measures ANOVA for EMG 
MPF indicated no significant 2-way (p=0.313, η

p
2=0.135) 

Table 2. Time to Task Failure (TTF) for the fatiguing task anchored to RPE = 8 at an elbow joint angle of 100°.

Subjects TTF (seconds)

1 178.2

2 234.0

3 180.6

4 369.6

5 179.4

6 250.2

7 252.0

8 378.0

9 288.0

Mean ± SD 256.7 ± 17.6



303www.ismni.org

Arnett et al.: Fatigability and Neuromuscular Responses Anchored to a High Perceptual Intensity

interaction. There were, however, significant main effects 
for Time (p<0.001, η

p
2=0.918) and Joint Angle (p<0.001, 

η
p
2=0.829). The main effect for Time (collapsed across Joint 

Angle) indicated that the pre-test EMG MPF value (68.5±8.1 
Hz) was significantly greater (p=0.004, d=0.340) than 
the post-test EMG MPF value (65.8±7.8 Hz) (Figure 1). The 
follow-up pairwise comparisons for the main effect for Joint 
Angle (collapsed across Time) indicated that there were 
no significant (p=0.037 to p=0.143; Bonferroni corrected 
alpha= 0.0167) differences between joint angles (Figure 2).

Mechanomyographic Amplitude

The results of the repeated measures ANOVA for MMG 
AMP indicated no significant 2-way (p=0.430, η

p
2=0.100) 

interaction and no significant (p=0.326, η
p
2=0.120) main 

effect for Time. There was, however, a significant main effect 
for Joint Angle (p=0.018, η

p
2=0.393). The follow-up pairwise 

comparisons for the main effect for Joint Angle (collapsed 
across Time) indicated that there were no significant 

(p=0.017 to p=0.188; Bonferroni corrected alpha= 0.0167) 
differences between joint angles (Figure 2).

Mechanomyographic Mean Power Frequency

The results of the repeated measures ANOVA for MMG 
MPF indicated no significant 2-way (p=0.102, η

p
2=0.248) 

interaction and no significant (p=0.095, η
p
2=0.309) main 

effect for Time. There was, however, a significant main effect 
for Joint Angle (p=0.047, η

p
2=0.317). The follow-up pairwise 

comparisons for the main effect for Joint Angle (collapsed 
across Time) indicated that there were no significant 
(p=0.028 to p=0.406; Bonferroni corrected alpha= 0.0167) 
differences between joint angles (Figure 2).

Neuromuscular Efficiency

The results of the repeated measures ANOVA for NME 
indicated no significant 2-way (p=0.300, η

p
2=0.140) 

interaction and no significant (p=0.300, η
p
2=0.140) main 

effect for Joint Angle. There was, however, a significant 

Figure 1. Mean ± SD Pre-test and Post-test values (collapsed across Joint Angles (JA): 75°, 100°, and 125°) for (A) MVIC, (B) EMG AMP, 
(C) EMG MPF, and (D) NME. *(A), (B), (C), (D) Pre-test value significantly (p≤0.05) greater than post-test value.
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main effect for Time (p=0.005, η
p
2=0.647). The main 

effect for Time (collapsed across Joint Angle) indicated 
that the pre-test NME value (1.0±0.0) was significantly 
greater (p=0.005, d=1.804) than the post-test NME value 
(0.89±0.08) (Figure 1).

Discussion

The results of the present study were consistent with 
a previous study9, and indicated that MVIC was greater 
at JA100 (27.8±5.3 Nm) than JA75 (25.4±4.9 Nm) and 
JA125 (21.4±5.0 Nm) (Figure 2). During maximal, isometric 
forearm flexion tasks, the greatest MVIC values typically 
occur between elbow joint angles of 90° and 120° due 
to an optimal degree of actin-myosin overlap and cross-
bridge formation. The lower MVIC values at both ends of the 

range of motion are due to disadvantageous actin-myosin 
overlap that interferes with cross-bridge formation21,23,25,26. 
Specifically, at smaller joint angles force production is 
limited by excessive actin-myosin overlap, while at larger 
joint angles, force production is diminished by reduced actin-
myosin overlap21,23,26. 

The current findings suggested that while anchoring to a 
constant RPE, there was an interaction between perceived 
fatigability and performance fatigability that was evident 
by decreases in the MVIC torque production from pre- to 
post-test. Specifically, the results of the present study 
indicated there were parallel fatigue-induced decreases 
in the MVIC values at JA75 (24.7%), JA100 (17.2%), and 
JA125 (24.0%) as a result of the sustained, isometric 
forearm flexion task anchored to RPE=8 at JA100 (Figure 1). 
Previous studies have reported decreases in MVIC from pre-
test to post-test following sustained, isometric unilateral and 

Figure 2. (A) MVIC, (B) EMG MPF, (C) MMG AMP, and (D) MMG MPF values (Mean±SD) at elbow joint angles (JA) of 75°, 100°, and 
125° (collapsed across Time: Pre-test and post-test). *(A) JA100 significantly greater than JA75 (p=0.003; Bonferroni corrected 
alpha=0.0167) and JA125 (p<0.001). **(A) JA75 significantly greater (p=0.002) than JA125.
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bilateral leg extension5,12,13 and forearm flexion8,9 fatiguing 
tasks, anchored to RPE=5 and RPE=8 for women and men. 
Specifically, when anchored to RPE=5, Keller et al.5,13 reported 
29.0% (unilateral) and 13.1% (bilateral) decreases in leg 
extension MVIC values for women and men, respectively. 
Keller et al.5,12 also reported 12.1% and 15.4% (unilateral) 
decreases in leg extension MVIC values for women and men, 
respectively, as well as a 13.1% (bilateral) decrease in MVIC 
for men when anchored to RPE=8. For forearm flexion tasks 
anchored to RPE=8 at elbow joint angles of 75° and 125°, 
Arnett et al.9 reported decreases in MVIC for women that 
ranged from 9.65% to 27.12%. In addition, for men following 
a fatiguing task anchored to RPE=8 at an elbow joint angle of 
100°, the decreases in MVIC ranged from 9.9% to 20.7%8. 
Thus, the fatigue-induced decreases in MVIC from the 
present study were consistent with previous studies5,8,9,12,13 
and suggested that following a sustained, isometric fatiguing 
task, similar decreases in MVIC occur regardless of joint 
angle, muscle action, level of perceptual intensity, and/or sex.

Previous studies5,8 have utilized pre-test and post-test 
EMG and MMG parameters to make inferences regarding 
changes in motor unit activation strategies following 
fatiguing tasks anchored to RPE. Keller et al.5 reported no 
changes in EMG AMP (muscle activation) and decreases in 
EMG MPF (action potential conduction velocity) following 
fatiguing, isometric leg extension tasks anchored to RPE= 1, 
5, and 8. Arnett et al.8, however, reported joint angle-specific 
decreases from pre-test to post-test for EMG AMP, but no 
changes in EMG MPF, MMG AMP (motor unit recruitment), 
or MMG MPF (global firing rate of activated, unfused motor 
units) following an isometric forearm flexion task anchored 
to RPE=8. The current findings indicated that from pre-test 
to post-test MVIC assessments, there were decreases in EMG 
AMP, EMG MPF, and NME (Figure 1), but no changes in MMG 
AMP and MMP MPF. Furthermore, joint angle did not affect 
the neuromuscular responses following the fatiguing task at 
JA100 (Figure 2). These findings were not consistent with 
Arnett et al.8 who reported joint angle-specific neuromuscular 
responses following a fatiguing task at JA100 for men. 
Hunter28 suggested that men and women may perceive and 
manifest fatigue differently due to differences in contractile 
mechanisms, fiber-type proportional area, and muscle 
perfusion. Therefore, it is possible that the differences in 
neuromuscular responses reported by Arnett et al.8 versus 
the current findings were due to the sex of the subjects.

Previously, Arnett et al.8 hypothesized that central fatigue, 
in addition to peripheral fatigue, may have influenced the pre-
test to post-test decreases in EMG AMP following a fatiguing 
task anchored to RPE. Central fatigue can result from the 
accumulation of interstitial hydrogen ions that stimulate 
group III/IV afferent neuron feedback to motor areas of the 
brain, which leads to decreases in central motor drive and 
torque production42. In addition, Taylor et al.43 suggested that 
during fatiguing tasks, central fatigue is also characterized 
by decreases in motor unit firing rates. In the present study, 
however, there were no fatigue-induced changes for MMG 
AMP or MMG MPF, which suggested that central fatigue 

may not have contributed to the decreases in MVIC and 
EMG AMP. Peripheral fatigue occurs distal to the myoneural 
junction and affects excitation-contraction coupling via 
exercise-induced metabolic perturbations. These metabolic 
perturbations include increases in inorganic phosphate and 
ammonia, and decreases in intracellular pH, calcium release 
and reuptake, actin-myosin binding, and troponin-calcium 
binding44,45. In the present study, the decrease in NME (Figure 
1) may have suggested that metabolic perturbations and 
peripheral fatigue impaired excitation-contraction coupling 
which led to decreased MVIC torque production. Because 
the contributions of central and peripheral mechanisms of 
fatigue cannot be determined from pre-test and post-test 
MVICs alone, future studies should continue to examine the 
decreases in MVIC following fatiguing tasks anchored to RPE 
utilizing evoked potentiated twitch amplitude and interpolated 
twitch techniques at various joint angles for men and women.

In the present study, the sustained, isometric task was 
performed at an elbow joint angle of 100° while anchored 
to RPE=8. Thus, the current findings are limited to those 
conditions and should be replicated using various joint 
angles, as well as low and moderate intensities. In addition, 
the neuromuscular responses are limited to the BB and future 
studies should examine fatigue-induced neuromuscular 
responses from all muscles involved in forearm flexion.

In summary, the results of the present study indicated 
that there were decreases in MVIC, EMG AMP, EMG MPF, 
and NME following the isometric forearm flexion fatiguing 
task. For MMG AMP and MMG MPF, however, there were no 
fatigue-induced changes following the fatiguing task. These 
responses suggested that mechanisms associated with 
peripheral fatigue led to excitation-contraction coupling 
failure, which resulted in decreased MVIC torque production 
and EMG AMP. It is still unknown, however, if mechanisms 
associated with central fatigue also contributed to the 
fatigue-induced MVIC and neuromuscular responses. In 
addition, the MVIC and neuromuscular responses were 
not affected by the joint angle at which the MVICs were 
performed. Thus, the current findings indicated that following 
a sustained, isometric forearm flexion task anchored to RPE 
= 8 at an elbow joint angle of 100°, joint angle did not affect 
the fatigue-induced MVIC and neuromuscular responses 
and that peripheral fatiguing mechanisms likely contributed 
to these responses.
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