338 research outputs found

    Exact solution of the anisotropic special transition in the O(n) model in 2D

    Get PDF
    The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance and integrability techniques. We obtain the full set of critical exponents at the anisotropic special transition--where the symmetry on the boundary is broken down to O(n_1)xO(n-n_1)--as a function of n_1. We also obtain the full phase diagram and crossover exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop models. The appearance of the generalization of Schramm-Loewner Evolution SLE_{\kappa,\rho} is also discussed.Comment: 4 pages, 2 figure

    Shadow epitaxy for in-situ growth of generic semiconductor/superconductor devices

    Full text link
    Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminium heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. We present a crystal growth platform -- based on three-dimensional structuring of growth substrates -- which enables synthesis of semiconductor nanowire hybrids with in-situ patterned superconductor shells. This platform eliminates the need for etching, thereby enabling full freedom in choice of hybrid constituents. We realise and characterise all the most frequently used architectures in superconducting hybrid devices, finding increased yield and electrostatic stability compared to etched devices, along with evidence of ballistic superconductivity. In addition to aluminium, we present hybrid devices based on tantalum, niobium and vanadium. This is the submitted version of the manuscript. The accepted, peer reviewed version is available from Advanced Materials: http://doi.org/10.1002/adma.201908411 Previous title: Shadow lithography for in-situ growth of generic semiconductor/superconductor device

    Advances in the theory of III-V Nanowire Growth Dynamics

    Get PDF
    Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.Comment: 63 pages, 25 figures and 4 tables. Some details are explained more carefully in this version aswell as a new figure is added illustrating various facets of a WZ crysta

    Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch

    Get PDF
    We consider an index-guiding silica photonic crystal fiber with a triangular air-hole structure and a poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The phase-velocity mismatch has a lower limit with coherence lengths in the micron range. The dimensionless nonlinear parameter is inversely proportional to the pitch and proportional to the relative hole size. Selected cases show bandwidths suitable for 20 fs pulse-conversion with conversion efficiencies as high as 25%/mW.Comment: 3 pages, 5 figures, submitted to Optics Letter

    Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    Full text link
    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic dispersion at different temperatures.Comment: 18 pages, 8 figures. Manuscript layout changed Feb. 10th 200

    Once-Daily Liraglutide Versus Lixisenatide as Add-on to Metformin in Type 2 Diabetes: A 26-Week Randomized Controlled Clinical Trial

    Get PDF
    OBJECTIVE To compare the efficacy and safety of liraglutide versus lixisenatide as add-on to metformin in patients with type 2 diabetes not achieving adequate glycemic control on metformin alone. RESEARCH DESIGN AND METHODS In this 26-week, randomized, parallel-group, open-label trial, 404 patients were randomized 1:1 to liraglutide 1.8 mg or lixisenatide 20 µg as add-on to metformin. Liraglutide was administered once daily at any time of the day. Lixisenatide was administered once daily within 1 h prior to the morning or evening meal. RESULTS At week 26, liraglutide reduced HbA1c (primary end point) more than lixisenatide (estimated treatment difference −0.62% [95% CI −0.8; −0.4]; P < 0.0001), with more patients reaching HbA1c <7% (53 mmol/mol) and ≤6.5% (48 mmol/mol) versus lixisenatide (74.2% and 54.6% for liraglutide vs. 45.5% and 26.2% for lixisenatide; P < 0.0001 for both). Liraglutide reduced fasting plasma glucose more than lixisenatide (estimated treatment difference −1.15 mmol/L [95% CI −1.5; −0.8]; P < 0.0001). Liraglutide provided greater reduction in mean 9-point self-measured plasma glucose (P < 0.0001). However, postprandial glucose increments were smaller with lixisenatide for the meal directly after injection compared with liraglutide (P < 0.05), with no differences between treatments across all meals. Both drugs promoted similar body weight decrease (−4.3 kg for liraglutide, −3.7 kg for lixisenatide; P = 0.23). The most common adverse events in both groups were gastrointestinal disorders. Greater increases in pulse, lipase, and amylase were observed with liraglutide. Hypoglycemic episodes were rare and similar between the two treatments. CONCLUSIONS At the dose levels studied, liraglutide was more effective than lixisenatide as add-on to metformin in improving glycemic control. Body weight reductions were similar. Both treatments were well tolerated, with low risk of hypoglycemia and similar gastrointestinal adverse event profiles

    Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection

    Get PDF
    The combination of strong spin-orbit coupling, large gg-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zincblende InAs1x_{1-x}Sbx_{x} nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al interfaces allows for a hard induced superconducting gap and 2ee transport in Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective gg-factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zincblende structure.Comment: 10 pages and 5 figure

    Abundance profiles and cool cores in galaxy groups

    Full text link
    Using data from the Two Dimensional XMM-Newton Group Survey (2dXGS), we have examined the abundance profile properties of both cool core (CC) and non cool core (NCC) galaxy groups. The ten NCC systems in our sample represent a population which to date has been poorly studied in the group regime. Fitting the abundance profiles as a linear function of log radius, we find steep abundance gradients in cool core (CC) systems, with a slope of -0.54+/-0.07. In contrast, non cool core (NCC) groups have profiles consistent with uniform metallicity. Many CC groups show a central abundance dip or plateau, and we find evidence for anticorrelation between the core abundance gradient and the 1.4 GHz radio power of the brightest group galaxy (BGG) in CC systems. This may indicate the effect of AGN-driven mixing within the central ~0.1r_500. It is not possible to discern whether such behaviour is present in the NCC groups, due to the small and diverse sample with the requisite radio data. The lack of strong abundance gradients in NCC groups, coupled with their lack of cool core, and evidence for enhanced substructure, leads us to favour merging as the mechanism for disrupting cool cores, although we cannot rule out disruption by a major AGN outburst. Given the implied timescales, the disruptive event must have occurred within the past few Gyrs in most NCC groups.Comment: 15 pages, 12 figures, accepted for publication in MNRA

    How long wavelengths can one extract from silica-core fibers?

    Get PDF
    The generation of wavelengths above 3 μm by nonlinear processes in short silica photonic crystal fibers is investigated numerically. It was found that wavelengths in the 3–3.5 μm range may be generated quite efficiently in centimeter-long fiber pieces when pumping with femtosecond pulses in the 1.55–2 μm range. Wavelengths in the range of 3.5–4 μm can in principle be generated, but these require shorter fiber lengths for efficient extraction. The results indicate that useful 3 μm sources may be fabricated with existing silica-based fiber technology
    corecore