78 research outputs found

    The effect of processing, handling and of testing procedures on the fat content of ice cream

    Get PDF
    A number of inquiries received from Iowa ice cream manufacturers shows that they believe that some steps in the processing or handling of ice cream cause a lower fat percentage in the frozen product than in the mix. From a theoretical viewpoint, no such fat lowering should occur in the product. A sufficient number of inquiries has been received, however, to warrant studying the causes of any irregularities which might result from the processing and the handling of the mix and of the frozen ice cream, and likewise, any winch might be introduced by the methods of obtaining and mixing the samples, by the methods of analysis employed or by the analytical apparatus used. For the sake of convenience the problem was divided into eight sections: 1. The effect of the temperature at which the samples were weighed, 2. a comparison of some Babcock modifications for ice cream testing, 3. the effect of the type of test bottle used, 4. the effect of aging and freezing, 5. the effect of hardening and retail handling, 6. variations that may occur in a single mix, 7. a comparison of tests made with samples taken in the frozen and in the melted state, and 8. a comparison of the test of the mix with those of the frozen ice cream, the scrapings from the dasher and the scrapings from the freezer sides

    A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students

    Get PDF
    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF

    Ten principles of heterochromatin formation and function

    Get PDF

    Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.

    Get PDF
    Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed

    A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students

    Get PDF
    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Full text link
    peer reviewedMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions. © 2021, The Author(s)

    The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    Get PDF
    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students
    corecore