2,874 research outputs found

    Optimizing a Passive Tracking Solar Panel System

    Get PDF
    Renewable energy has been gaining attention from individuals to government agencies as the negative effects of fossil fuel usage has been realized. Solar power is a reliable and green alternative to fossil fuels. Solar power is harnessed through the direct absorption of rays from the sun. In this experiment, a passive sun-tracking system using a shape memory alloy (SMA), gears, and a fresnel lens rotated a solar panel to face the sun throughout the day. At the end of the day the system rotates the solar panel back to the east in preparation for the next day’s cycle to begin. This system relies on zero external electricity, making it cost effective and suitable for remote locations where electricity is not easily obtained. The rotation mechanism for the system starts with the shape memory alloy being heated by the sun, which causes it to contract, pulling the sprag gear and turning the solar panel to face the sun. In order to turn the solar panel back to the east at the end of the day, a plastic arm that has elevated toward the reset system trigger will push the trigger over allowing the gears and panel to return to their initial positions. The focus for the project this summer was to optimize the reset system, optimize the Fresnel lens placement, and complete testing

    Description and outcomes of a simple surgical technique to treat thrombosed autogenous accesses

    Get PDF
    ObjectiveOwing to the difficulty of removing acute and chronic thrombus from autogenous accesses (AA) by standard surgical and endovascular techniques, many surgeons consider efforts to salvage a thrombosed AA as being futile. We describe a simple technique to extract acute and chronic thrombus from a failed AA. This technique involves making an incision adjacent to the anastomosis, directly extracting the arterial plug, and manually milking thrombus from the access. This report details the outcomes of a series of thrombosed AAs treated by surgical thrombectomy/intervention using this technique for manual clot extraction.MethodsA total of 146 surgical thrombectomies/interventions were performed in 102 patients to salvage a thrombosed AA. Mean follow-up was 15.6 months. Office, hospital, and dialysis unit records were reviewed to identify patient demographics, define procedure type, and determine functional patency rates. Kaplan-Meier survival analysis was used to estimate primary and secondary functional patency rates.ResultsComplete extraction of thrombus from the AA was achieved in 140 of 146 cases (95%). The studied procedure itself was technically successful in 127 cases (87%). Reasons for failure were the inability to completely extract thrombus from the AA in six, failed angioplasty due to long segment vein stenosis or sclerosis in seven or vein rupture in two, and central vein occlusion in one. Three failures occurred for unknown causes ≤3 days of successful thrombectomy. No single factor analyzed (age, sex, race, diabetes status, access type or location) was associated with technical failure. The estimated primary and secondary functional patency rates were 27% ± 5% and 61% ± 6% at 12 months.ConclusionsThe manual clot extraction technique described in this report effectively removed acute and chronic thrombus from failed AAs. Its use, combined with an intervention to treat the underlying cause for AA failure, significantly extended access durability

    Nanolithographic Top‐Down Patterning of Polyoxovanadate‐based Nanostructures with Switchable Electrical Resistivity

    Get PDF
    The top-down fabrication of ∼10 nm vanadium oxide nanostructures by electron beam lithography based on a molecular vanadium oxide resist material is reported. The new material enables the large-scale deposition of electrically switchable nanostructures which can be directly incorporated in established e-beam lithography. The findings could in future enable the top-down fabrication of functional metal oxide nanostructures in the < 10 nm domain. The top-down lithographic fabrication of functional metal oxide nanostructures enables technologically important applications such as catalysis and electronics. Here, we report the use of molecular vanadium oxides, polyoxovanadates, as molecular precursors for electron beam lithography to obtain functional vanadium oxide nanostructures. The new resist class described gives access to nanostructures with minimum dimensions close to 10 nm. The lithographically prepared structures exhibit temperature-dependent switching behaviour of their electrical resistivity. The work could lay the foundation for accessing functional vanadium oxide nanostructures in the sub-10-nm domain using industrially established nanolithographic methods

    Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer's disease. Very little is currently known about whether or not aging impacts the transplantation efficiency of MSCs. METHODS: In this study, we investigated the distribution of intravenously transplanted syngeneic MSCs derived from young and aged mice into young, aged, and transgenic APP/PS1 Alzheimer's disease mice. MSCs from male donors were transplanted into female mice and their distribution pattern was monitored by PCR using Y-chromosome specific probes. Biodistribution of transplanted MSCs in the brains of APP/PS1 mice was additionally confirmed by immunofluorescence and confocal microscopy. RESULTS: Four weeks after transplantation into young mice, young MSCs were found in the lung, axillary lymph nodes, blood, kidney, bone marrow, spleen, liver, heart, and brain cortex. In contrast, young MSCs that were transplanted into aged mice were only found in the brain cortex. In both young and aged mouse recipients, transplantation of aged MSCs showed biodistribution only in the blood and spleen. Although young transplanted MSCs only showed neuronal distribution in the brain cortex in young mice, they exhibited a wide neuronal distribution pattern in the brains of APP/PS1 mice and were found in the cortex, cerebellum, hippocampus, olfactory bulb, and brainstem. The immunofluorescent signal of both transplanted MSCs and resident microglia was robust in the brains of APP/PS1 mice. Monocyte chemoattractant-1 levels were lowest in the brain cortex of young mice and were significantly increased in APP/PS1 mice. Within the hippocampus, monocyte chemoattractant-1 levels were significantly higher in aged mice compared with younger and APP/PS1 mice. CONCLUSIONS: We demonstrate in vivo that MSC biodistribution post transplantation is detrimentally affected by aging and neuronal health. Aging of both the recipient and the donor MSCs used attenuates transplantation efficiency. Clinically, our data would suggest that aged MSCs should not be used for transplantation and that transplantation of MSCs into aged patients will be less efficacious

    Dual-source CT for chest pain assessment

    Get PDF
    Comprehensive CT angiography protocols offering a simultaneous evaluation of pulmonary embolism, coronary stenoses and aortic disease are gaining attractiveness with recent CT technology. The aim of this study was to assess the diagnostic accuracy of a specific dual-source CT protocol for chest pain assessment. One hundred nine patients suffering from acute chest pain were examined on a dual-source CT scanner with ECG gating at a temporal resolution of 83 ms using a body-weight-adapted contrast material injection regimen. The images were evaluated for the cause of chest pain, and the coronary findings were correlated to invasive coronary angiography in 29 patients (27%). The files of patients with negative CT examinations were reviewed for further diagnoses. Technical limitations were insufficient contrast opacification in six and artifacts from respiration in three patients. The most frequent diagnoses were coronary stenoses, valvular and myocardial disease, pulmonary embolism, aortic aneurysm and dissection. Overall sensitivity for the identification of the cause of chest pain was 98%. Correlation to invasive coronary angiography showed 100% sensitivity and negative predictive value for coronary stenoses. Dual-source CT offers a comprehensive, robust and fast chest pain assessment

    tert-Butoxy­triphenyl­silane

    Get PDF
    The title compound, C22H24OSi or Ph3SiOtBu, shows a distorted tetra­hedral coordination sphere around the Si atom. The C—O—Si angle is 135.97 (12)° and the O—Si distance is 1.6244 (13) Å. The mol­ecules are held together by weak inter­actions only. An H⋯H distance of 2.2924 (7) Å is found between aryl H atoms and is the shortest inter­molecular distance in the structure. With regard to the broad applicability of R 3SiO structural motifs in all fields of chemistry, the mol­ecule demonstrates a common model system for silicon centers surrounded by sterically demanding substituents

    Evaluating Glucose Control With a Novel Composite Continuous Glucose Monitoring Index.

    Get PDF
    OBJECTIVE: The objective was to describe a novel composite continuous glucose monitoring index (COGI) and to evaluate its utility, in adults with type 1 diabetes, during hybrid closed-loop (HCL) therapy and multiple daily injections (MDI) therapy combined with real-time continuous glucose monitoring (CGM). METHODS: COGI consists of three key components of glucose control as assessed by CGM: Time in range (TIR), time below range (TBR), and glucose variability (GV) (weighted by 50%, 35% and 15%). COGI ranges from 0 to 100, where 1% increase of time 7.5-10%, had significantly higher COGI during 12 weeks of HCL compared to sensor-augmented pump therapy, mean (SD), 60.3 (8.6) versus 69.5 (6.9), P 7.5% to 9.9%, use of real-time CGM led to improved COGI, 49.8 (14.2) versus 58.2 (9.1), P < .0001. In MDI users with impaired awareness of hypoglycemia, use of real-time CGM led to improved COGI, 53.4 (12.2) versus 66.7 (11.1), P < .001. CONCLUSIONS: COGI summarizes three key aspects of CGM data into a concise metric that could be utilized to evaluate the quality of glucose control and to demonstrate the incremental benefit of a wide range of treatment modalities

    Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Get PDF
    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg(-1) and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 +/- 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California

    Hyperspectral reflectance measurements from UAS under intermittent clouds: Correcting irradiance measurements for sensor tilt

    Get PDF
    One great advantage of optical hyperspectral remote sensing from unmanned aerial systems (UAS) compared to satellite missions is the possibility to fly and collect data below clouds. The most typical scenario is flying below intermittent clouds and under turbulent conditions, which causes tilting of the platform. This study aims to advance hyperspectral imaging from UAS in most weather conditions by addressing two challenges: (i) the radiometric and spectral calibrations of miniaturized hyperspectral sensors; and (ii) tilting effects on measured downwelling irradiance. We developed a novel method to correct the downwelling irradiance data for tilting effects. It uses a hybrid approach of minimizing measured irradiance variations for constant irradiance periods and spectral unmixing, to calculate the spectral diffuse irradiance fraction for all irradiance measurements within a flight. It only requires the platform's attitude data and a standard incoming light sensor. We demonstrated the method at the Palo Verde National Park wetlands in Costa Rica, a highly biodiverse area. Our results showed that the downwelling irradiance correction method reduced systematic shifts caused by a change in flight direction of the UAS, by 87% and achieving a deviation of 2.78% relative to a on ground reference in terms of broadband irradiance. High frequency (< 3 s) irradiance variations caused by high-frequency tilting movements of the UAS were reduced by up to 71%. Our complete spectral and radiometric calibration and irradiance correction can significantly remove typical striped illumination artifacts in the surface reflectance-factor map product. The possibility of collecting precise hyperspectral reflectance-factor data from UAS under varying cloud cover makes it more operational for environmental monitoring or precision agriculture applications, being an important step in advancing hyperspectral imaging from UAS.Innovation Fund Denmark/[7048-00001B]/IFD/DinamarcaAgricultural Water Innovations in the Tropics/[]/AgWIT/CanadáUniversidad de Costa Rica/[805-C0-603]/UCR/Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic
    corecore