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ABSTRACT 

Objective 

To describe a novel composite continuous glucose monitoring index (COGI) and to 

evaluate its utility, in adults with type 1 diabetes, during hybrid closed-loop (HCL) 

therapy and multiple daily injections (MDI) therapy combined with real-time 

continuous glucose monitoring (CGM). 

 
Methods  

COGI consists of three key components of glucose control as assessed by CGM: 

Time in range (TIR), time below range (TBR) and glucose variability (GV) (weighted 

by 50%, 35% and 15%). COGI ranges from 0 to 100, where 1% increase of time <3.9 

mmol/L (<70 mg/dl) is equivalent to 4.7% reduction of TIR between 3.9 to 10 mmol/L 

(70 to 180 mg/dl), and 0.5 mmol/L (9 mg/dl) increase in standard deviation is 

equivalent to 3% reduction in TIR. 

Results 

Continuous subcutaneous insulin infusion (CSII) users with HbA1c >7.5% to 10%, 

had significantly higher COGI during 12 weeks of HCL compared to sensor-

augmented pump therapy (mean (SD), 69.5 (6.9) vs 60.3 (8.6), p<0.001). Similarly, in 

CSII users with HbA1c <7.5%, HCL improved COGI from 59.9 (11.2) to 74.8 (6.6), 

p<0.001. In MDI users with HbA1c >7.5% to 9.9%, use of real-time CGM led to 

improved COGI, 49.8 (14.2) vs 58.2 (9.1) p<0.0001. In MDI users with impaired 

awareness of hypoglycaemia, use of real-time CGM led to improved COGI, 66.7 

(11.1) vs 53.4 (12.2), p<0.001. 
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Conclusions 

COGI summarises three key aspects of CGM data into a concise metric that could be 

utilised to evaluate the quality of glucose control and to demonstrate the incremental 

benefit of wide range of treatment modalities.   

 

Keywords: continuous glucose monitoring, type 1 diabetes, closed-loop insulin 

delivery  
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Real-time continuous glucose monitoring (CGM) and intermittently viewed continuous 

glucose monitoring has transformed the management of type 1 diabetes (1) and 

paved the way to novel therapeutic interventions such as automated insulin delivery 

(2).  Usage of real-time CGM by multiple daily injection (MDI) users has been shown 

to improve HbA1c (3) and reduce the burden of hypoglycaemia (4). There is 

increasing recognition of the limitations of HbA1c as the sole measure of glycaemic 

control, as it provides little or no information on clinically relevant outcomes such as 

hypoglycaemia or glucose variability (5-6). In contrast, continuous glucose monitoring 

(CGM) data provide detailed information about multiple aspects of glucose control 

such as time spent in the target glucose range (TIR), time spent in hypo and 

hyperglycaemia as well as glucose variability (GV). An international panel of experts 

has recently agreed on reporting of various CGM based metrics under research and 

clinical care setting (7).  

 

Given the limitation of HbA1c and the greater appreciation of CGM-derived glycaemic 

outcomes, there is a growing interest to develop composite CGM indices (8). Such 

composite indices may provide adjuvant information related to dysglycaemia in 

people living with type 1 diabetes and may provide a tool to assess the therapeutic 

response to novel interventions such as automated insulin delivery or other therapies 

incorporating CGM (9). Composite indices are widely used in other clinical 

specialities to complement decision-making, for example in intensive care medicine 

(APACHE score), neonatology (APGAR score) and stroke medicine (Glasgow Coma 

Scale). Previous attempts at summarising CGM data include "Glucose Pentagon 

Model" (8) and “Q score”(10).  
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Here we describe a novel, easier to calculate and interpret,  composite continuous 

glucose monitoring index (COGI) encompassing three vital elements of CGM-derived 

glucose control.  We then use data from four recently published randomised 

controlled trials (RCTs) to demonstrate the utility of COGI index. We hypothesised 

that COGI might reveal important glycaemic benefits of novel treatment modalities 

such automated insulin delivery with hybrid closed-loop and addition of real-time 

CGM to those using MDI therapy, beyond merely reporting changes in HbA1c.  
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Methods 

We constructed the COGI from three key elements of CGM representing 

euglycaemia, hypoglycaemia, and glucose variability: “Time in Range” (TIR) between 

3.9 to 10mM (70 to 180mg/dl) and “Time below Range” <3.9 mmol/L (70mg/dl) (TBR) 

were used as measures for euglycaemia and hypoglycaemia, respectively (Table 1). 

Standard deviation (SD) of overall glucose was used as a measure of glucose 

variability (GV). The relative contributions from these components where TIR, TBR 

and GV contributed 50%, 35% and 15% to the total COGI were pragmatically based 

on investigator consensus.  

 

We allocated 0 points to 0% TIR and 100 points where TIR between 3.9 to 10mM (70 

to 180mg/dl) is 100%. For TBR, 100 points were allocated if the TBR <3.9 mmol/L 

(<70mg/dl) was 0% and 0 points if TBR 15% and above. GV as measured by SD was 

scaled from 1 to 6 mmol/L (18 to 108mg/dl) where SD of 1 mmol/L (18mg/dl) and 

below is given 100 points, and SD of 6 mmol/L (108mg/dl) and above is given 0 

points. For each of these elements, points were linearly interpolated between their 

boundaries. 

 

The total index ranges from 0 to 100. The above allocation of scoring means, one 

percent increase in time <3.9 mmol/L (<70mg/dl) is equivalent to 4.7% decrease in 

time in range (TIR) (penalty for time below range), and 0.5 mmol/L (9mg/dl) increase 

in standard deviation of glucose is equivalent to 3% decrease in TIR (penalty of 

higher variability). It also means one percent increase in time <3.9 mmol/L 

(<70mg/dl) will decrease COGI by 2.3 points, whereas an increase of TIR by 1 

percentage point will increase the COGI by 0.5 points. A healthy individual without 



7 

diabetes who spent 2% time below 3.9 mmol/L (70mg/dl) will have a COGI of 90.6 

while if the time spent below 3.9 mmol/L is zero will have maximum COGI of 100 

(based on reference 13).  

 

The total and individual components of COGI were calculated in adults with type 1 

diabetes treated with multiple daily injection therapy (MDI) or continuous 

subcutaneous insulin infusion (CSII) from 4 previously published RCTs (3,4,11,12). 

Study design and methods of these studies have been published and described in 

detail elsewhere. Summaries of these studies are shown in Table 2. 

 

Briefly, AP@home04 phase 1 study (11) evaluated the safety and effectiveness of 

hybrid closed-loop in comparison to sensor-augmented pump therapy in adults with 

type 1 diabetes and HbA1c between 7.5% to 10% (58 to 86 mmol/mol) for 12 weeks, 

while  AP@home04 phase 2 study (12) evaluated the safety and effectiveness of 

hybrid closed-loop in comparison to insulin pump therapy with or without real-time 

CGM in adults with type 1 diabetes and HbA1c < 7.5% (<58 mmol/mol) for 4 weeks.   

 

DIAMOND study (3) evaluated the effectiveness of real-time CGM in adults with type 

1 diabetes and HbA1c levels between 7.5% (58 mmol/mol) to 9.9% (85 mmol/mol) 

treated with MDI where participants were allocated 2:1 to either real-time CGM 

(Dexcom G4 Platinum system, Dexcom Inc, CA, USA) or usual care group for 24 

weeks. HypoDE study (4) evaluated the effectiveness of real-time CGM (Dexcom G5, 

Dexcom Inc, CA, USA) in avoidance of hypoglycaemia in adults with type 1 diabetes 

treated with MDI and history of impaired awareness of hypoglycaemia or severe 

hypoglycaemia and HbA1c ≤9.0% (75 mmol/mol).  
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Data and statistical analysis 

We calculated TIR between 70 to 180 mg/dl, TBR <70 mg/dl and GV as measured by 

the SD for each study participant. We then calculated the individual and total 

components of the COGI score using Microsoft Excel. SD are reported for means 

and interquartile ranges (IQRs) for medians where applicable. We used SPSS (v.22) 

or SAS (version 9.3) for statistical analysis. Either paired samples t-tests or analysis 

of covariance (ANOVA) were performed for comparison of treatment groups. In case 

of skewed data, either Wilcoxon signed rank tests or covariance models based on 

ranks with van der Waerden scores were used. Each analysis was tested at a two-

sided significance levels of 0.05. 
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Results 

Twelve-week of hybrid closed-loop by type 1 diabetes adults with HbA1c >7.5% (11) 

led to a significant improvement in COGI index (Table 3). Although all three 

components of COGI improved, the highest contribution came from TIR. HbA1c and 

COGI improvement by hybrid closed-loop use in the whole cohort was -0.3%(0.6) 

(p=0.002) and +10% (p<0.005, 95% confidence interval (CI) 7 to 11%) respectively. 

Sub-group analysis in those without HbA1c improvement (n=15) showed that total 

and individual COGI components improved with hybrid closed-loop use (total COGI, 

CL vs. SAP, 71(6) vs. 60 (10), p<0.001, TIR 36(5) vs. 33(6), p=0.003, TBR 26 (4) vs. 

19 (9), p=0.001 and GV 9(2) vs. 8(2), p=0.029). Four-week hybrid closed-loop use by 

type 1 diabetes adults with HbA1c <7.5% (12) also showed significant improvements 

in total and all three components of the COGI index (Table 3). 

 

In the 6-month study of  real-time CGM use among MDI users with sub-optimal 

control (DIAMOND study) (3), a significant improvement of all three components of 

COGI was shown (Table 4). During the HypoDE study, which included individuals 

with impaired awareness of hypoglycaemia, as expected the most noticeable 

improvements were noted in the hypoglycaemia component. The between-group 

HbA1c difference in the study involving type 1 diabetes individuals with impaired 

awareness of hypoglycaemia (HypoDE study) was non-significant at 0.03% (p=0.66) 

(4), however a significant improvement in the total COGI index was observed notably 

within the hypoglycaemia component, highlighting the utility of COGI beyond HbA1c.  
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Discussion 

The multiple glucometric data provided by  CGM present an excellent opportunity to 

define a composite index which can be utilised in clinical and research settings. Here 

we present such a novel composite CGM index, encompassing three key aspects of 

CGM-based assessment of glucose control: time spent in normal glucose, 

hypoglycaemia and glucose variability. These are aspects of glucose control which 

are arguably most important for people living with type 1 diabetes. We show that by 

using COGI, the incremental benefits of hybrid closed-loop use on glucose control 

can be demonstrated even in those individuals with very good HbA1c. Furthermore, 

COGI demonstrates the additional benefit of real-time CGM use even without 

apparent HbA1c improvements. 

 

The original Glucose Pentagon Model described by Thomas et. al in 2009 (8) 

included five metrics: mean glucose, SD of the mean glucose, amount of time per 

day in which hyperglycaemic values (>160mg/dl) were recorded, the area below the 

curve of hyperglycaemic values (>160mg/dl), and HbA1c. Each parameter formed a 

single axis of a five-sided figure. By taking the area within the glucose pentagon of a 

given individual with diabetes and normalising it to the standard area of a healthy 

individual without diabetes, a Glycaemic Risk Parameter (GRP) was defined. 

Subsequently, authors re-analysed a sub-set of data from the JDRF real-time CGM 

study showing a more substantial percentage improvement of GRP than HbA1c 

improvement with real-time CGM (9).  

 

Hypoglycaemia is one of the most significant barriers to achieving near-normal 

glucose control for people living with diabetes and their caregivers (13). One of the 
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limitations of the original glucose pentagon may be the non-inclusion of a measure of 

hypoglycaemia. In 2017, Vigersky et al. presented the comprehensive glucose 

pentagon (CGP) which included several changes to the original pentagon model (14).  

In the CGP, HbA1c axis was eliminated, and glycaemic variability was measured with 

CV rather than SD. New aspects included time outside range and intensity of hypo 

and hyperglycaemia.   

 

Q-score is another novel concept in analysing CGM profiles presented by Augustein 

et al. in 2015 (10). Authors identified four key factors using 1,562 historic CGM 

profiles in people with type 1 and type 2 diabetes. These four factors were; central 

tendency and hyperglycaemia, intra-day variability, hypoglycaemia and inter-day 

variability. They choose mean glucose, time spent above the target range, the range 

of glucose, time spent below target range and mean of daily difference (MODD) in 

calculating the Q score. They used Q-score to categorise the quality of glucose 

control ranging from poor to very good. 

 

One potential limitation of glucose pentagon models and Q score is the need for 

relatively complex mathematical formulas to calculate the pentagon area and Q score 

and difficulty in interpreting values obtained with these methods under day-to-day 

clinical practice conditions. On the other hand, a single index expressed as a score 

from 100 (where 100 reaches the glucose profile of people without diabetes) would 

be easier to understand and interpret. A previous real-time CGM study looking at the 

characterisation of interstitial glucose levels in individuals without diabetes have 

shown that virtually all glucose levels were <140mg/dl (<7.8mM) and that 0.6 to 2.9% 

of real-time CGM glucose levels could be below 70mg/dl (<3.9mM) (15). In that 
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study, glucose variability measured with SD was below 18mg/dl (<1 mmol/L) in all 

age groups.    

 

COGI summarises CGM data into a single index ranging from 0 to 100. It is easy to 

interpret, i.e. those with COGI close to 100 have a glucose profile similar to 

somebody without diabetes while COGI of 50 indicates that quality of glucose control 

is 50% of that in a healthy individual without diabetes. COGI can be calculated using 

three widely available CGM metrics. As shown by variety of recently published 

studies, COGI could be easily applied in a wide number of study design and settings 

using CGM to assess study outcomes. Due to its cumulative effects, it may generate 

higher statistical power over individual components of CGM or HbA1c. Serial COGI 

scores could also be used as a relatively convenient and understandable method by 

people living with type 1 diabetes and caregivers to assess the progress of treatment 

during routine care.  

 

Future iterations of COGI may include replacing components of COGI with alternative 

metrics. There is currently no consensus on the optimal metric for assessing GV. 

Standard deviation, which correlates with mean glucose, was used to measure GV in 

our analysis. As COGI does not include mean glucose, use of SD may be acceptable 

or advantageous. It is thus possible to replace SD with the coefficient of variation with 

the appropriate scale as the metric choice of variability. Similarly, time spent below 

54mg/dl could be used instead of 70mg/dl.  Reporting on COGI outcomes could 

potentially be incorporated into clinical software programmes such as Medtronic 

Carelink, Dexcom Clarity or Freestyle Libreview, as part of type 1 diabetes 

management. 
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A limitation of COGI is the pragmatic decision related to the weight of the three 

components: TIR 50%, TBR 35% and GV 15%. We allocated the most substantial 

weight to the time in range with 50% contribution to the index as this is likely to be 

the parameter most likely to relate to HbA1c and hence to capture the risk of long-

term complications. We allocated 35% of weight to time below range, more than the 

15% weight for GV to account for the importance of avoiding hypoglycemia as it 

remains one of the biggest barriers to achieving near normal glucose control. Other 

potential limitations include the use of SD instead of CV (see above) and use of 

70 mg/dl as a cut off for time below range. HbA1c remains to date the only clinically 

validated prognostic marker of diabetes complications, and at present, no studies 

have linked CGM-based metrics with long-term clinical outcomes. There is a need to 

evaluate whether COGI can provide prognostic indications for future risk of macro 

and microvascular complications. Future studies will also need to evaluate the utility 

of COGI in type 2 diabetes or hospitalised patients and the relationship between 

COGI and patient-reported outcomes such as diabetes distress or low mood. 

 

In conclusion, we have presented a novel composite CGM index consisting of three 

clinically meaningful parameters of glucose control representing euglycaemia, 

hypoglycaemia and glucose variability. We demonstrated, using four randomised 

studies involving adults with type 1 diabetes in diverse settings, that COGI may be 

utilised as an index of quality of glucose control specifically in the context of novel 

technology using CGM. Future studies evaluating its impact on real world data as 

well as clinical and patient-related outcomes are needed. 
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