5 research outputs found

    Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude

    Get PDF
    Aim: We studied global variation in beta diversity patterns of lake macrophytes using regional data from across the world. Specifically, we examined 1) how beta diversity of aquatic macrophytes is partitioned between species turnover and nestedness within each study region, and 2) which environmental characteristics structure variation in these beta diversity components.  Location: Global  Methods: We used presence-absence data for aquatic macrophytes from 21 regions distributed around the world. We calculated pairwise-site and multiple-site beta diversity among lakes within each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients. Beta regression was used to correlate the diversity coefficients with regional environmental characteristics. Results: Aquatic macrophytes showed different levels of beta diversity within each of the 21 study regions, with species turnover typically accounting for the majority of beta diversity, especially in high-diversity regions. However, nestedness contributed 30-50% of total variation in macrophyte beta diversity in low-diversity regions. The most important environmental factor explaining the three beta diversity coefficients (total, species turnover and nestedness) was altitudinal range, followed by relative areal extent of freshwater, latitude and water alkalinity range. Main conclusions: Our findings show that global patterns in beta diversity of lake macrophytes are caused by species turnover rather than by nestedness. These patterns in beta diversity were driven by natural environmental heterogeneity, notably variability in altitudinal range (also related to temperature variation) among regions. In addition, a greater range in alkalinity within a region, likely amplified by human activities, was also correlated with increased macrophyte beta diversity. These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus on regions with large numbers of lakes that exhibit broad environmental gradients.

    Plants in aquatic ecosystems: current trends and future directions

    Get PDF
    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper we present an overview of current trends and future directions in aquatic plant research in the early 21st century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrate the global relevance of aquatic plant research in the early 21st century but also the many challenges that this burgeoning scientific discipline must address

    Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude

    No full text
    Aim : We studied global variation in beta diversity patterns of lake macrophytes using regional data from across the world. Specifically, we examined (1) how beta diversity of aquatic macrophytes is partitioned between species turnover and nestedness within each study region, and (2) which environmental characteristics structure variation in these beta diversity components. Location : Global. Methods : We used presence–absence data for aquatic macrophytes from 21 regions distributed around the world. We calculated pairwise‐site and multiple‐site beta diversity among lakes within each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients. Beta regression was used to correlate the diversity coefficients with regional environmental characteristics. Results : Aquatic macrophytes showed different levels of beta diversity within each of the 21 study regions, with species turnover typically accounting for the majority of beta diversity, especially in high‐diversity regions. However, nestedness contributed 30–50% of total variation in macrophyte beta diversity in low‐diversity regions. The most important environmental factor explaining the three beta diversity coefficients (total, species turnover and nestedness) was elevation range, followed by relative areal extent of freshwater, latitude and water alkalinity range. Main conclusions : Our findings show that global patterns in beta diversity of lake macrophytes are caused by species turnover rather than by nestedness. These patterns in beta diversity were driven by natural environmental heterogeneity, notably variability in elevation range (also related to temperature variation) among regions. In addition, a greater range in alkalinity within a region, likely amplified by human activities, was also correlated with increased macrophyte beta diversity. These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus on regions with large numbers of lakes that exhibit broad environmental gradients

    Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude

    No full text
    Abstract Aim: We studied global variation in beta diversity patterns of lake macrophytes using regional data from across the world. Specifically, we examined (1) how beta diversity of aquatic macrophytes is partitioned between species turnover and nestedness within each study region, and (2) which environmental characteristics structure variation in these beta diversity components. Location: Global. Methods: We used presence–absence data for aquatic macrophytes from 21 regions distributed around the world. We calculated pairwise‐site and multiple‐site beta diversity among lakes within each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients. Beta regression was used to correlate the diversity coefficients with regional environmental characteristics. Results: Aquatic macrophytes showed different levels of beta diversity within each of the 21 study regions, with species turnover typically accounting for the majority of beta diversity, especially in high‐diversity regions. However, nestedness contributed 30–50% of total variation in macrophyte beta diversity in low‐diversity regions. The most important environmental factor explaining the three beta diversity coefficients (total, species turnover and nestedness) was elevation range, followed by relative areal extent of freshwater, latitude and water alkalinity range. Main conclusions: Our findings show that global patterns in beta diversity of lake macrophytes are caused by species turnover rather than by nestedness. These patterns in beta diversity were driven by natural environmental heterogeneity, notably variability in elevation range (also related to temperature variation) among regions. In addition, a greater range in alkalinity within a region, likely amplified by human activities, was also correlated with increased macrophyte beta diversity. These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus on regions with large numbers of lakes that exhibit broad environmental gradients
    corecore