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ABSTRACT103

Aim: We studied global variation in beta diversity patterns of lake macrophytes using regional data104

from across the world. Specifically, we examined 1) how beta diversity of aquatic macrophytes is105

partitioned between species turnover and nestedness within each study region, and 2) which106

environmental characteristics structure variation in these beta diversity components.107

Location: Global108

Methods: We used presence-absence data for aquatic macrophytes from 21 regions distributed109

around the world. We calculated pairwise-site and multiple-site beta diversity among lakes within110

each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness111

coefficients. Beta regression was used to correlate the diversity coefficients with regional112

environmental characteristics.113

Results: Aquatic macrophytes showed different levels of beta diversity within each of the 21 study114

regions, with species turnover typically accounting for the majority of beta diversity, especially in115

high-diversity regions. However, nestedness contributed 30-50% of total variation in macrophyte116

beta diversity in low-diversity regions. The most important environmental factor explaining the117

three beta diversity coefficients (total, species turnover and nestedness) was altitudinal range,118

followed by relative areal extent of freshwater, latitude and water alkalinity range.119

Main conclusions: Our findings show that global patterns in beta diversity of lake macrophytes are120

caused by species turnover rather than by nestedness. These patterns in beta diversity were driven121

by natural environmental heterogeneity, notably variability in altitudinal range (also related to122

temperature variation) among regions. In addition, a greater range in alkalinity within a region,123

likely amplified by human activities, was also correlated with increased macrophyte beta diversity.124

These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus125

on regions with large numbers of lakes that exhibit broad environmental gradients.126

Page 14 of 60Journal of Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

INTRODUCTION127

128

Understanding broad-scale biodiversity patterns has become a fundamental topic in biogeography129

and ecology. The importance of explaining these patterns has increased in recent years because they130

are intimately related to, for example, ecosystem functioning (Symstad et al., 2003) and resilience131

(Folke et al., 2004), biogeographical regionalization (Divisek et al., 2016), niche conservatism132

(Alahuhta et al., 2016), species conservation (Brooks et al., 2006) and ecosystem services (Naidoo133

et al., 2008). Spatial variation in broad-scale diversity patterns is typically driven by natural history134

(e.g., past dispersal barriers and evolutionary changes), interactions among species (e.g.,135

competition, predation, and mutualism) and biogeography (e.g., distribution of climate zones,136

productivity and habitat heterogeneity) (Willig et al., 2003; Qian & Ricklefs, 2007; Soininen et al.,137

2007; Field et al., 2009; Baselga et al., 2012). Better knowledge of patterns in biodiversity and their138

basis is also critical for managing and adapting to invasive species, land use changes, landscape and139

habitat degradation, and increasing temperatures associated with global change (Vörösmarty et al.,140

2010). Therefore, studies focussing on broad-scale diversity patterns may directly advance both141

basic and applied research.142

143

One intrinsic component of biodiversity is beta diversity (i.e., among-site differences in species144

composition). In general, beta diversity indicates the spatial variation of species composition among145

communities across space (Anderson et al., 2011), and is essentially related to two different146

processes (Baselga, 2010): species replacement (i.e., turnover, where one species replaces another147

with no change in richness) and nestedness (i.e., species richness differences due to species gain or148

loss). Mechanisms responsible for species replacement originate from environmental filtering,149

competition and historical events (Melo et al., 2009; Kraft et al., 2011; Wen et al., 2016).150
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Conversely, nestedness differences stem from species thinning or from other ecological processes151

(Baselga, 2010; Legendre, 2014), such as physical barriers or human disturbance, that result in152

species-poor sites being a subset of the richest site in the region. Independent of the dissimilarity153

measure used to represent beta diversity, it has been reported to decrease with latitude and increase154

with altitude and area (Jones et al., 2003; Heegaard, 2004; Qian & Ricklefs, 2007; Soininen et al.,155

2007; Kraft et al., 2011). Explanations for these patterns in beta diversity stem from effects of156

energy availability, water-energy dynamics, climatic variability, habitat heterogeneity and human157

disturbance (Gaston, 2000; Willig et al., 2003; Socolar et al., 2016). However, the majority of158

studies on beta diversity have been conducted at small spatial extents or using coarse resolution data159

across broad spatial scales (Kraft et al., 2011; Dobrovolski et al., 2012), exposing the lack of beta160

diversity studies using fine-resolution data at regional and global scales.161

162

Increasing evidence indicates, however, that patterns in beta diversity depend on the studied163

ecosystem, organisms and geographical location (Soininen et al., 2007; Dobrovolski et al., 2012;164

Viana et al., 2016; Wen et al., 2016). Many of the reported patterns in beta diversity concern well-165

known, and often charismatic, taxa of terrestrial ecosystems (Qian & Ricklefs, 2007; Melo et al.,166

2009; Kraft et al., 2011; Wen et al., 2016) but may be unrepresentative of patterns in beta diversity167

for organisms in other ecosystems (Soininen et al., 2007). Studies of beta diversity in freshwaters168

have often proved to be incongruent with those of terrestrial assemblages (Heino, 2011; Hortal et169

al., 2015). A few studies have suggested that ecological factors or dataset properties associated with170

freshwater communities may override spatial processes in determining beta diversity (Heino et al.,171

2015; Viana et al., 2016). One possible explanation for these differences is that terrestrial172

ecosystems are more directly influenced by climate, whereas water temperatures, which are173

naturally more important to aquatic organisms, are more stable. Moreover, the physiological174

constraints of access to water and atmospheric gases are fundamentally different for terrestrial and175
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aquatic organisms. Consequently, there is a need to study diversity patterns of freshwater176

assemblages at regional and global scales to discover whether they follow the general trends evident177

in terrestrial organisms.178

179

Aquatic macrophytes are among the most under-represented groups in broad-scale studies of180

freshwater biodiversity, yet they are an integral structural and functional component of freshwater181

ecosystems (Chambers et al., 2008). Few studies on macrophyte diversity have been conducted at182

continental  or  global  extents,  and  these  have  relied  on  data  scaled  to  coarse  political  or183

biogeographic regions (Chambers et al., 2008; Chappuis et al., 2012), leading to potentially184

spurious conclusions about species distributions at finer scales (Hortal et al., 2015). Although185

aquatic macrophyte diversity has been actively studied at local and regional extents, these studies186

may suffer from ecosystem-specific characteristics (i.e., varying environmental gradients lead187

species to respond differently to abiotic factors among regions), including variation in underlying188

environmental gradients among regions (Heino et al., 2015; Viana et al., 2016). For example,189

aquatic macrophyte diversity studied using similar methods showed a clear decreasing latitudinal190

gradient in one region, yet a reversed latitudinal gradient in another (Alahuhta et al., 2013;191

Alahuhta, 2015). Thus, explaining and testing hypotheses related to broad-scale patterns in diversity192

is difficult with one or a few data sets, and a more general overview demands comparative analysis193

of multiple data sets (Crow, 1993; Kraft et al., 2011; Heino et al., 2015).194

195

In this paper, we examine pairwise- and multiple-site beta diversity of aquatic macrophytes using196

data sets for 21 regions from around the world. Specifically, we consider two questions: (1) How is197

beta diversity of aquatic macrophytes partitioned between species turnover and nestedness across198

study regions on a global scale? (2) Which environmental factors explain variation in these beta199
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diversity components for aquatic macrophytes across study regions? Based on a continental scale200

study (Viana et al., 2016), we expected that spatial turnover accounts for most of the overall beta201

diversity. We also assumed that latitude does not strongly structure macrophyte beta diversity202

(Crow, 1993; Chambers et al., 2008). Instead, we hypothesised that macrophyte beta diversity is203

mostly explained by variables reflecting variation in local habitat conditions, thus indicating the204

effect of environmental heterogeneity on beta diversity (Heegaard, 2004; Viana et al., 2016).205

206

MATERIAL AND METHODS207

208

Macrophyte and explanatory variable data209

We compiled lake macrophyte data for 21 regions with variable sizes from around the world (Fig.210

1). Although only one or a few regions are included from some continents (e.g., only Morocco from211

Africa), our data set covered all major continents inhabitable by aquatic macrophytes (see212

Chambers et al., 2008). The regions either closely but not entirely followed a country’s political213

border (e.g., Finland and New Zealand), or were delineated based on natural features (e.g., the214

Paraná River basin in Brazil and a small area in the Nord-Trøndelag county of Norway). The lakes215

consisted mostly of natural lentic water bodies (i.e., reservoirs were excluded), but were influenced216

by anthropogenic pressures to varying degrees (e.g., nutrient enrichment, introduced species, water217

level fluctuation, isolation and fish farming). The data consisted of presence-absence of vascular218

macrophyte species that grow exclusively in freshwaters (i.e., hydrophytes). The species data were219

based on empirical or scientific surveys which were performed all or in part by the authors, with the220

exception of Canada, China and Japan where data were compiled from existing literature (Appendix221

S1 in Supporting Information). Macrophytes were surveyed using broadly the same methods within222

each region, enabling us to compare beta diversity patterns across regions and to minimise the223
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potential negative effects caused by contrasting regional survey methods. The surveys were224

executed mostly between 1990 and 2012, with the exception of Canada, China and Britain, where225

surveys were done during 1970s and 1980s, between 1964 and 2014, and between 1980 and 1998,226

respectively.227

228

We used convex hulls to delineate the minimal area containing all survey locations within a region229

(Appendix S2 in Supporting Information, Heino et al., 2015). We then used the convex hulls to230

extract environmental information for each region and calculated mean and range values, depending231

on the variable in question, for each of the 21 regions.232

233

The explanatory variables calculated for each regional convex hull included region spatial extent234

(km2), altitudinal range (m, Hijlmans et al., 2005), modelled alkalinity range in lakes (mequiv. l−1 at235

1/16 degrees resolution, Marcé et al., 2015), predicted range of soil organic carbon mass fraction at236

depth  of  1  m  (1  km  resolution,  Hengl  et  al.,  2014),  areal  extent  of  freshwaters  expressed  as  a237

proportion of region spatial extent, herein referred to as proportion of freshwater (%,  1  km238

resolution, Latham et al., 2014) and latitude (i.e., coordinate Y originated from each region’s centre239

point) (Table 1). In addition, we examined whether areal extent of artificial surfaces (e.g., surfaces240

with houses,  roads or industrial  sites,  Latham et al.,  2014) as a proportion of region spatial  extent241

(%), was correlated with the beta diversity coefficients and other explanatory variables. Regional242

spatial extent was a surrogate for sampling effort, as it was strongly positively associated with both243

numbers of lakes and number of species  present  within  a  region  (RSpearman ≥ 0.64, p<0.001,244

Appendix S3 in Supporting Information), but is also an indicator of environmental heterogeneity245

(see also Gaston, 2000). In addition, altitudinal range likely illustrates variability in habitats suitable246

for different macrophytes (Gaston, 2000; Melo et al., 2009), and it simultaneously served as a proxy247
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for variation in temperature (correlation with temperature range: RS = 0.92, p<0.001). Altitudinal248

range was also positively associated with mean altitude (RS=0.73, p<0.001). Following Dormann et249

al. (2013), multicollinearity was manifested at the level of RS |>0.7| and, in these cases, statistically250

less significant predictors of beta diversity were excluded from final models (Appendix S2). Carbon251

compounds in water directly and indirectly influence macrophytes (Alahuhta & Heino, 2013;252

Kolada et al., 2014). We therefore used two different proxies, water alkalinity and soil organic253

carbon, to represent these local-scale components. Carbon dioxide and bicarbonate concentration254

influence photosynthesis in aquatic macrophytes, while organic carbon (i.e., carbon leached from255

organic soils) absorbs light, a common constraint on productivity (Madsen et al., 1996; Vestergaard256

& Sand-Jensen, 2000). Water alkalinity is also affected by anthropogenic land use (e.g.,257

Vestergaard & Sand-Jensen, 2000; Kolada et al., 2014), enabling us to infer the degree of258

anthropogenic pressures on macrophyte beta diversity in lakes located on homogenous geology but259

lacking lake-level chemistry data. The relative areal extent of freshwaters within a region was used260

to indicate availability of potential habitat for macrophyte growth. Finally, changes in species261

diversity with latitude are well known, with species diversity often decreasing towards the Poles262

(Qian & Ricklefs, 2007). Negative latitude values were converted to positive in our analysis to263

compensate for limited data availability on southern hemisphere regions, thereby strengthening the264

relationship between macrophyte beta diversity and latitude.265

266

Beta diversity coefficients for different data sets267

We determined beta diversity of aquatic macrophytes using pairwise-site and multiple-site indices268

based on presence-absence species data within a region. In our study, the pairwise-site index269

indicated degree of absolute beta diversity within each region, whereas the multiple-site index was270

used to compare relative differences in beta diversity among regions (Baselga, 2010). For both271
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indices, the calculations were based on the Sørensen dissimilarity, resulting in the following three272

dissimilarity coefficients: 1) Sørensen coefficient (i.e., a measure of overall beta diversity, βsor/SOR),273

2)  Simpson  coefficient  (i.e.,  a  measure  of  turnover  immune  to  nestedness  resulting  from  species274

richness differences, βsim/SIM), and 3) a coefficient measuring nestedness–resultant beta diversity275

(βsne/SNE, Baselga, 2010; Legendre, 2014). The Simpson coefficient defines species turnover without276

the influence of richness gradients, whereas the nestedness-resultant component of beta diversity is277

the direct difference between βsor/SOR and βsim/SIM. For the pairwise-site index, we averaged the278

pairwise dissimilarities between all lakes in a region. Because the number of sites affects the279

multiple-site index (Baselga, 2010), we resampled the 21 regional datasets to standardize them to a280

common number of 21 lakes, the minimum number of lakes found across the regional datasets (in281

Brazil Amazon, Table 2), based on 1000 permutations in each region. Both beta diversity indices282

were obtained using the R package “betapart” (Baselga et al., 2013). The three beta diversity283

coefficients were calculated using the functions beta.pair and beta.sample for pairwise-site and284

multiple-site indices, respectively.285

286

Statistical analysis287

We used beta regression to identify which predictor variables explained beta diversity of aquatic288

macrophytes across the 21 regions. Beta regression, which is an extension of generalized linear289

models (GLM), was developed for situations where the dependent variable is measured290

continuously on a standard unit interval between 0 and 1 (Cribari-Neto & Zeileis, 2010). The291

models are based on beta distribution with parameterization using mean and precision parameters.292

Similarly to GLMs, the expected mean is linked to the responses through a link function and a293

linear predictor. The purpose of the link function is to stabilize the error variance and transform the294

fitted values to the desired application range (Ferrari & Cribari-Neto, 2004). Linear regression using295
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a logit-transformed response variable is still commonly employed to analyse the type of response296

data considered in our work. However, this is questionable, because it (a) may yield fitted values for297

the variable of interest that exceed its theoretical lower and upper bounds, (b) does not allow298

parameter interpretation in terms of the response on the original scale, and (c) measures proportions299

typically displaying asymmetry and, hence, inference based on the normality assumption can be300

misleading (Ferrari & Cribari-Neto, 2004). We therefore used beta regression models with a logistic301

link function, which is asymptotic in the range 0 to 1 (i.e., the predicted values are automatically in302

the desired application range).303

304

The models with the most important explanatory variables influencing the beta diversity305

coefficients were selected based on the second order Akaike Information Criterion (AICc) among306

all model combinations. AICc takes into account sample size by increasing the relative penalty for307

model complexity with small data sets, and its use is recommended if, as in our case, the ratio308

between sample size and model parameters is less than 40 (Burnham & Anderson, 2002). We also309

examined the possibility of curvilinear relationships between beta diversity coefficients and certain310

explanatory variables (i.e., region extent, organic carbon and latitude) by entering the quadratic311

terms of these variables in our models, making the use of AICc even more relevant. In addition, we312

calculated AIC differences, which can be used to rank different models in order of importance313

(AICi – AICmin, with AICmin representing the best model with respect to expected Kullback-Leibler314

information lost). Akaike weights derived from AIC differences were estimated for each model to315

extract additional information on model ranking. We  also  present  pseudo  R2 values,  which  are  a316

squared correlation of linear predictor and link-transformed response and have the same scale as R2317

values (between 0 and 1) (Ferrari & Cribari-Neto, 2004). The relative importance of explanatory318

variables was evaluated by summing the Akaike weights of the models in which a given variable319

appears from the exhaustive list of models. A value of <2.0 was used as the threshold for deviation320
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of AICc values among candidate models (i.e., difference between model i and the model with the321

smallest AICc, ΔAICc), because models with AICc differing by < 2.0 are typically considered to322

have similar statistical support (Burnham & Anderson, 2002).323

324

All statistical analyses were conducted in R version 3.2.0. Beta regression was performed using325

functions in the R package “betareg” (Cribari-Neto & Zeileis, 2010), and candidate models were326

selected with the R package “MuMIn” (Bartoń, 2014).327

328

RESULTS329

330

Beta diversity of aquatic macrophytes differed among the 21 study regions, a finding that was331

mostly attributable to species turnover (Fig. 2), especially in high beta diversity regions, and applied332

to both pair-wise and multiple-site indices. Nestedness accounted only for a small fraction of333

overall beta diversity (14% of pairwise site dissimilarity on average) and was most important334

(although still less than species turnover) in regions with low overall pairwise‒site beta diversity.335

Macrophyte beta diversity patterns in the majority of regions were thus explained by variation in336

species composition among lakes, rather than differences in species richness. Based  on  the337

pairwise-site index, the degree of macrophyte beta diversity varied clearly among the 21 study338

regions. The greatest beta diversity was found in the coastal South American lakes (Salga, 0.90) and339

Spain (0.92), whereas values were lowest in both the Brazilian regions (0.43-0.44) and China340

(0.43). The top models obtained through beta regression explained similar amounts of variation and341

included the same important explanatory variables (Table 2) for both pairwise-site and multiple-site342
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beta diversity indices. The best models accounted for 28-33% of variation in the Sørensen343

coefficient, 33-37% in the turnover component and 27-28% in the nestedness component.344

345

The most important explanatory variables for all the best models across the two beta diversity346

indices and different coefficients were altitudinal range (Fig. 3, Appendix S4), proportion of347

freshwater, latitude range (Fig. 3, Appendix S4) and alkalinity range, yet their relative importance348

varied somewhat. We found that overall beta diversity (i.e., Sørensen coefficient) and species349

turnover increased with increasing altitudinal range, latitude and alkalinity range, and decreased350

with increasing proportion of freshwater. The negative relation between species turnover and351

proportion of freshwater is probably due to connectivity, which typically increases with proportion352

of freshwaters, resulting in enhanced exchange of macrophyte species among lakes, thereby353

lowering turnover. Nestedness was negatively related to the first three variables but was positively354

associated with proportion of freshwater. Although some explanatory variables (i.e., spatial extent,355

latitude and organic carbon range) showed a curvilinear relationship with beta diversity coefficients356

in preliminary analyses, only the linear terms of these variables were selected in the best models.357

Comparison across all possible models showed that altitudinal range was included in the majority of358

models,  with  proportion  of  freshwater,  latitude  and  alkalinity  range  all  being  of  secondary359

importance (Table 3). By contrast, organic carbon and spatial extent were weak predictors of beta360

diversity across the coefficients.361

362

In addition to relationships between beta diversity coefficients and environmental variability,363

certain environmental variables were correlated with indicators of anthropogenic pressures.364

Alkalinity range showed a positive relationship with the relative areal extent of artificial surfaces as365

proportion of region spatial extent (RS=0.46, p=0.04). Both alkalinity range (RS=0.48, p=0.03) and366
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temperature range (RS=0.56, p=0.008) were associated with spatial extent, such that the span in367

alkalinity and temperature was greater in regions that covered a greater areal extent. These368

correlations also impede the separation of possible independent effects for these factors.369

370

DISCUSSION371

372

Aquatic macrophytes exhibited considerable regional variation in beta diversity, which was largely373

driven by species turnover. Our results thus suggest that turnover in species composition primarily374

accounts for macrophyte beta diversity. Aquatic macrophytes have similarly shown high levels of375

species turnover at a regional and continental extent (Heegaard, 2004; Boschilia et al., 2016; Viana376

et al., 2016). However, our finding conflicts with previous global extent studies on beta diversity in377

which nestedness contributed equally or more than species turnover to total diversity of amphibians378

(Baselga et al., 2012), fish (Leprieur et al., 2011), macroinvertebrates (Heino et al., 2015) and379

oribatid mites (Gergocs & Hufnagel, 2015). In addition, nestedness has been found to outweigh380

species turnover in areas affected by glaciations until recent time (Baselga et al., 2012; Dobrovolski381

et  al.,  2012).  We  found  no  sign  of  this,  as  nestedness  was  typically  lowest  in  regions  that  were382

wholly or partly ice covered during the last glaciation (e.g., Finland, Norway, Canada, China, New383

Zealand, Switzerland, US state of Minnesota and UK). Our study thus emphasises that conclusions384

about global patterns in beta diversity need verification across a diverse range of organisms, instead385

of using only a few well-studied terrestrial taxa, because variable patterns exist in nature and386

exceptions are as instructive as conformity.387

388
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Contrary to our a priori expectations based on trends found in terrestrial taxa (Willig et al., 2003;389

Qian & Ricklefs, 2007; Soininen et al., 2007), beta diversity of aquatic macrophytes increased390

(albeit  weakly)  towards  the  poles.  Based  on  Rapoport’s  rule  (Stevens,  1989),  species  ranges  and391

niche width should increase at higher latitudes, giving rise to a decrease in beta diversity (Soininen392

et al., 2007). But in general, many aquatic assemblages do not exhibit the latitudinal patterns393

observed for terrestrial taxa, such as mammals, birds and vascular plants (Heino, 2011; Hortal et al.,394

2015). Even regarding species richness, one of the most widely-used measures of diversity, aquatic395

macrophytes show differing responses to latitude at continental and global scales (Rørslett, 1991;396

Chambers et al., 2008; Chappuis et al., 2012). In addition, contrasting latitudinal patterns in397

macrophyte beta diversity have been found within individual regions (Heegaard, 2004; Viana et al.,398

2016), likely due to different study scales and varying sampling techniques used. Our study399

included only macrophyte data collected via consistent methods (within each region) and showed400

that overall beta diversity increases weakly from the equator towards the poles. However, the401

relative importance of latitude in explaining global macrophyte beta diversity was modest, being402

selected only in two of eleven models. These two models concerned the overall (Sørensen) beta403

diversity. In contrast, species turnover and nestedness did not vary consistently with latitudinal404

gradient. This is likely because aquatic macrophytes are more responsive to local environmental405

conditions than the broad-scale variation in climate that underlies latitudinal gradients in the beta406

diversity of other (terrestrial) organism groups. Aquatic environments moderate extreme climatic407

conditions, leading to less variation in temperature in freshwater than terrestrial ecosystems, and408

this may partly explain the conflict in latitudinal beta diversity patterns between freshwater and409

terrestrial assemblages.410

411

Although the relationship between latitude and macrophyte beta diversity conflicted with that of412

many organisms, our results support another reported beta diversity pattern. Habitat heterogeneity413
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has previously been shown to structure beta diversity for terrestrial plants (Freestone & Inouye,414

2006) and butterflies at a regional extent (Andrew et al., 2012), birds and mammals at a continental415

extent (Melo et al., 2009), and oceanic bacteria (Zinger et al., 2011) and fish (Leprieur et al., 2011)416

at a global extent. Variation in macrophyte beta diversity in our study regions was predominantly417

determined by environmental heterogeneity, primarily the degree of altitudinal variability (also418

correlated with temperature variability) in a region. Thus, beta diversity of aquatic macrophytes419

(expressed as either multiple‒site or pairwise‒site diversity) increased with variation in altitude.420

This positive association between beta diversity and altitudinal range likely reflects the greater421

variety of habitats or resources available with greater variation in altitude. Wang et al. (2012)422

similarly found that elevational beta diversity of aquatic micro- and macroorganisms was primarily423

related to environmental heterogeneity at a regional extent. Species distributions are typically424

constrained by harsh climatic conditions at high altitude (Gaston, 2000), and various aspects of425

macrophyte physiology are known to be temperature sensitive (Sculthorpe, 1967; Rooney & Kalff,426

2000). However, the buffering of temperature extremes in aquatic environments allows for427

continued plant growth over a wide altitudinal range. Greater variation in habitats with increasing428

variation in altitude is also related to geological and soil properties, as low lying lakes will vary429

more in water chemistry due to greater variation in soil and geology, which in turn increase430

variation  in  water  chemistry  (Wang  et  al.,  2012),  as  well  as  from  the  added  influence  of  human431

activity. These factors magnify the altitudinal gradient which enhances environmental heterogeneity432

and thus enables the establishment of a greater variety of macrophyte species, further increasing433

beta diversity within a region.434

435

Regional variation in water alkalinity, soil organic carbon availability and spatial extent further436

indirectly would have supported the habitat heterogeneity hypothesis in explaining global patterns437

of macrophyte beta diversity. However, contrary to our expectations, these individual variables438
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were not important predictors of macrophyte beta diversity. Alkalinity and soil organic carbon439

influence aquatic macrophytes through their differing ability to use bicarbonate or carbon dioxide as440

a source of carbon in photosynthesis (Madsen et al., 1996), but also indirectly reflect human effects441

on freshwaters. In-lake alkalinity often increases with eutrophication, while nutrient inputs from442

agriculture and human effluents tend to be greatest in landscapes dominated by carbonate-rich443

minerals (Kolada et al., 2014; Alahuhta, 2015). Similarly, regional spatial extent is often positively444

associated with beta diversity, as in our work, because larger areas incorporate higher levels of445

environmental heterogeneity (Gaston, 2000; Anderson et al., 2011; Heino et al., 2015). Moreover,446

spatial extent was also positively related to alkalinity range and temperature range, both expressions447

of environmental heterogeneity. These explanations suggest an underlying effect of environmental448

heterogeneity on aquatic macrophyte beta diversity that may also be affected by human activities449

that impair water quality and physical characteristics of near-shore habitats (Kosten et al., 2009;450

Vörösmarty et al., 2010; Alahuhta, 2015).451

452

Besides discovering novel patterns in macrophyte beta diversity, our main result has practical453

implications for environmental management: the conservation of aquatic macrophyte assemblages454

that naturally exhibit high species turnover will be most favoured by a regional approach, in which455

multiple lakes that span a wide environmental gradient are protected within a region (Socolar et al.,456

2016). This approach further underlines the need to maximise the total area protected, independent457

of the geographical location. Conversely, low biodiversity regions characterized by high nestedness458

require conservation actions that prioritise high-diversity sites over those of lower diversity (Socolar459

et al., 2016). In these low-biodiversity regions, the possible influence of land-based activities within460

a catchment should be carefully evaluated and connectivity among high-diversity habitats should be461

maintained.462
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Table 1. Explanatory variables used in the study and the number of lakes and species within each region. Negative latitude (Y) values were
converted to positive in the analysis to strengthen the relationship between beta diversity coefficients and latitude. Extent: Spatial extent of a
region, Organic C: Soil organic carbon range, Waters: areal extent of water within a region as proportion of total spatial extent, Y: latitude.

Region Number
of lakes

Number
of
species

Alkalinity range
(mequiv. l−1)

Altitudinal
range (m)

Extent
(km2)

Org. C
(mass
fraction)

Waters
(%)

Y

Brazil, Amazon 21 27 0.01 603 943 4 0.23 -6.23
Brazil, Paraná River 29 37 0.79 17 368 18 21.08 -22.78
Canada 58 82 3.95 242 82540 33 21.72 44.78
China 36 100 4.75 1374 151400 20 13.36 30.78
Denmark 32 77 4.33 156 17260 30 10.67 56.08
Finland 261 98 3.55 923 315900 110 10.50 64.32
Hungary 50 39 0.59 375 25740 12 1.56 47.28
Italy 22 60 4.04 3637 37980 20 2.20 44.68
Japan 49 93 3.20 3683 216600 28 1.40 38.24
Morocco 33 54 4.33 2322 36520 7 0.51 34.18
New Zealand 205 88 4.58 2800 250800 48 22.16 41.10
Norway 30 30 0.00 309 724 17 23.01 64.90
Poland 475 84 4.34 289 175000 22 1.99 52.99
Salga project (Brazil, Uruguay and
Argentina)

67 28 3.63 2119 299300 57 3.88 -32.98

Spain 66 56 4.67 3129 34480 19 2.98 42.04
Sweden 379 101 4.68 1853 403600 68 10.99 62.24
Switzerland 92 60 3.18 3633 26910 35 4.93 46.93
UK 1928 127 4.81 1219 174000 81 2.28 54.24
US state of Florida 205 57 4.45 112 104200 66 5.14 28.99
US state of Minnesota 441 65 4.31 477 152700 58 7.09 46.26
US state of Wisconsin 409 102 3.93 397 141900 22 5.62 44.72
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Table 2. Summary of best models explaining variation in aquatic macrophyte beta diversity for multiple-site and pair-wise dissimilarities within a

region. Models were calculated for Sørensen dissimilarity (total beta diversity), Simpson dissimilarity (beta diversity due to turnover) and

nestedness dissimilarity (beta diversity due to nestedness-resultant richness differences). Best models with delta <2 are presented, because these

models are typically considered to have similar statistical support (Burnham & Anderson, 2002). Waters: Proportion of water within a region, df:

degree of freedom, delta: AICc difference between model i and the model with the smallest AICc, Weight: Akaike weight, pseudo R2: Maximum

likelihood coefficients of determination were obtained through an iterative process.

Multiple site beta diversity Pair-wise beta diversity
Sørensen AICc df ΔAICc Weigh

t
Pseudo
R2

Sørensen AICc df ΔAICc Weigh
t

Pseudo
R2

Altitudinal range -80.9 3 0 0.435 0.282 Altitudinal range -21.9 3 0 0.719 0.283
Altitudinal range+Latitude -79.6 4 1.34 0.223 0.317 Altitudinal

range+Latitude
-20.0 4 1.88 0.281 0.301

Altitudinal range+Waters -79.1 4 1.74 0.182 0.326
Altitudinal range+Alkalinity
range

-78.9 4 1.99 0.160 0.309

Species turnover Species turnover
Altitudinal range -57.2 3 0 0.708 0.325 Altitudinal range -14.7 3 0 1 0.326
Altitudinal range+Waters -55.4 4 1.77 0.292 0.366
Nestedness Nestedness
Altitudinal range -83.9 3 0 1 0.280 Altitudinal range -62.8 3 0 1 0.269
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Table 3. Relative importance (I) of explanatory variables among all model compilations (n=32). 1.00 indicates that the particular variable is

selected in all models, whereas 0 represents that the variable is not selected in any of the models. “+” indicates positive and “-“ negative relation

between the beta diversity coefficient and that environmental variable. If a given variable was not included among the most important beta

diversity models (AICc < 2.0), then the direction of influence was obtained from a full model including all the candidate variables. I: Importance,

D: Direction of influence, Altitude: Altitudinal range, Alkalinity: Alkalinity range, Extent: Spatial extent of a region, Organic C: Soil organic

carbon range, Waters: areal extent of water within a region as proportion of total spatial extent.

Multiple site beta diversity Pair-wise beta diversity

Sørensen  Species

turnover

 Nestedness  Sørensen  Species

turnover

 Nestedness

I D I D I D I D I D I D

Altitude 0.80 + 0.90 + 0.85 - 0.82 + 0.90 + 0.89 -

Waters 0.33 - 0.30 - 0.23 + 0.26 - 0.25 - 0.17 +

Latitude 0.32 + 0.24 + 0.18 - 0.26 + 0.21 + 0.18 -

Alkalinity 0.25 + 0.22 + 0.20 - 0.24 + 0.22 + 0.17 -

Organic

C

0.16 - 0.19 - 0.20 - 0.16 - 0.16 + 0.17 -

Extent 0.16 - 0.17 - 0.20 - 0.16 - 0.16 - 0.17 +
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Fig. 1. Study regions are represented in blue circles situated in the middle of convex hulls (n=21). Crosses in the right side panel indicate which

latitudinal bands are covered in our work.
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Fig. 2. Simpson dissimilarity (beta diversity due to species turnover) and nestedness dissimilarity (beta diversity due to nestedness-resultant

richness differences) that sum to Sørensen dissimilarity (i.e., total beta diversity) based on multiple site (A) and mean of pair-wise (B) beta

diversity measures for each study region. Multiple-site beta diversity was based on 21 randomly-selected lakes for each region (except for Brazil,

Amazon which had a total n of 21).
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Fig. 3. Relationships between pairwise site beta diversity dissimilarities (i.e., Sørensen, species turnover and nestedness) and mean altitude,

altitudinal range and latitude. Similar plot for multiple site beta diversity coefficients can be found in Appendix S4.
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Appendix S1. Description of study lakes and macrophyte survey methods in each region. 

 

Brazil, Amazon 

The sampled lakes are temporary upland lakes located in the National Forest of Carajás-Pará, 

Brazil. Most sampled lakes are slightly acid and the surrounding area has a soil rich in iron ore. The 

presence of aquatic macrophyte species was recorded in 21 lakes by observation while walking over 

the macrophyte stands near the shoreline (parallel to the lake) and in a transect (perpendicularly to 

the lake) that crosses the lake. Samplings were carried out twice a year during 2004-2005 and 2010-

2011, and the pooled data was used in the analyses. 

 

Brazil, Paraná River 

Sampled lakes in the Upper Paraná River floodplain are characterized as shallow floodplain lakes, 

which may be permanently connected with the main river channel or may be isolated with a 

temporary connection with the main river (during the floods). These lakes vary in pH (from acid to 

alkaline), water transparency (from clear to turbid water) and nutrient concentration (from 

oligotrophic to eutrophic). In all lakes we recorded aquatic macrophytes presence by boat at a slow 

speed along the entire lake shoreline. We also carried out species records on foot in the shoreline 

using a transect. We used a grapple, treble hooks and a rake to record submersed species. In this 

area, we sampled 29 lakes quarterly during 2010. 

 

Britain 

The lakes used are a subset of the 3500 sites surveyed by the Nature Conservancy Council or its 

successor national conservation agencies, mainly Scottish Natural Heritage, between 1980 and 

1998. Sites are mostly in Scotland and typically small (<50ha) shallow (<3m average depth) and 

oligotrophic, although the dataset includes base-rich lowland lakes in the southern Britain. Sites 

varied from near-pristine to moderately degraded. Surveys were carried out from June-mid 

September by two observers, normally experienced botanists, circumnavigating the shoreline on 

foot to wading depth, using a rake to collect samples from deeper water and also checking 

strandline material. In larger water bodies wading surveys were complemented by use of a boat to 

collect samples from deeper water or inaccessible locations. Aquatic and emergent plants were 

identified to species and their abundance assessed visually on a 5-point scale. Voucher specimens 

were retained in a herbarium and sent to national experts for verification. Further details are 

provided in Duigan et al. (2007). 
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Canada 

The 58 study sites were located in southern Ontario with the majority (n=50) being individual lakes 

situated north to north-east of Toronto in the Sudbury, Killarney, Muskoka, Haliburton and 

Kawartha lake districts. The remaining data are from one lake in eastern Ontario and 6 sites in Lake 

St. Clair (a connecting lake in the Great Lakes system). With the exception of one study, the data 

are from the 1970s. At the time of the surveys, the more southerly lakes were mesotrophic to 

eutrophic (as a result of urban or rural settlement and agricultural influences). In contrast, the more 

northerly lakes were the typical soft-water, unbuffered water bodies characteristic of the 

Precambrian Shield but with varying exposure to acidifying emissions. For the majority (n=42), 

macrophytes were sampled along transect lines that extended from shore to the maximum depth of 

colonization.  For the remainder (n=16), macrophytes were sampled at specific locations. Species 

lists are provided in Ontario Ministries of Environment and Natural Resources (1976), Crowder et 

al. (1977), Wile and Hitchin (1977), Miller & Dale (1979), Hitchin et al. (1984), Schloesser et al. 

1984, and Neil et al. (1991).  

 

China 

Most of the studied lakes are located in the mid-lower Yangtze Basin. The lake depths varied 

between 1 and 12 metres. Many of them are facing intensive human activities, including fishery, 

eutrophication and river-lake isolation. Macrophytes were surveyed using a belt transect method. 

The number of transects varied according to a lake size. Field surveys were conducted usually three 

or four times during a growing season and the recorded species were pooled together per lake for 

our analysis. The macrophytes were surveyed between 1954 and 2014. 

 

Denmark 

Most of the 49 Danish lakes included are located in central Jutland. Most lakes were meso- to 

eutrophic, alkaline systems with average depth ranging from 0.5 to 16 m. A few humic and low 

alkaline (i.e., neutral pH or acid) lakes were included too. Macrophytes were surveyed  at an area 

dependent number of observations point, ranging from 75 to 375 points, situated on equidistant 

transects covering the entire lake area (if shallow) or the potential macrophyte covered area (if 

deeper) (Johansson and Lauridsen, 2014). Observation points were distributed ensuring similar 

observation numbers in each depth interval (0.25 to 1 m depth intervals). A relative species 

distribution, a total species list and percentage coverage were generated for each lake. Surveys were 

performed between July 1st and August 15th at maximum biomass and before senescence, during 

the period 2001-2010.   

 

Finland 
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Majority of the studied 261 lakes were shallow, small humic lakes and many of them were 

impacted by anthropogenic pressures (i.e., agriculture and urban development). Lake macrophytes 

were surveyed using a main belt transect method (Kanninen et al., 2013), in which a five-metre-

wide transect extends (perpendicularly to the shoreline) from the upper eulittoral to the outer depth 

limit of vegetation. The transect is divided into zones according to the dominant life-form or 

species. The number of transects varied depending on lake size. Lake macrophytes are observed by 

wading or by boat, with the aid of rake and hydroscope. The surveys were done between June and 

September over the period 2002–2011.  

 

Hungary 

All the studied 50 lakes are small, shallow lakes located in an agricultural landscape. Lake 

macrophytes were surveyed using a transect method. The number of transects parallel to shoreline 

varied according to lakes size (Schaumburg et al., 2007). All parallel transects contained minimum 

of four belt transects (two metre wide and perpendicular to the shoreline) extended from the upper 

eulittoral to the outer depth limit of vegetation. Field surveys were conducted between June and 

September over the period 2004-2012. 

 

Italy 

Majority of the studied 22 lakes were deep, big lakes and impacted by anthropogenic pressures (i.e., 

agriculture and urban development). Lake macrophytes were surveyed along transects (Azzella et 

al., 2013; Bolpagni, 2013). Data on aquatic plant diversity and representativeness were collected 

from each 1-meter depth interval down to the maximum colonization depth. The number of 

transects varied depending on lake size and sampling effort was tested to evaluate the effectiveness 

in the evaluation of macrophyte biodiversity. An underwater camera connected to a monitor placed 

on the boat was used to assess species presence and cover, while a double row rake was used to 

collect samples to help with macrophyte species identification. The surveys were done between 

June and September over the period 2009–2010. 

 

Japan 

Lakes were selected from the database which describes native vascular aquatic plants in Japan 

(Nishihiro et al., 2014) and additional data from newly found literatures were added to the database. 

From the whole database, we used those lakes in this work, in which macrophyte data were 

surveyed between 1990 and 2014. Selected lakes were distributed between 29.85°and 45.07°N. 

Lake area ranged from 0.01 to 704.95 km
2
 (median 1.59 km

2
), and maximum depth ranged from 1 

to 326 m (median 6.35 m). 

 

Morocco 
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Most studied lakes were shallow and were located in the mountains (Middle and High Atlas) or 

Atlantic plains. These lakes are used by local people for cattle grazing, recreation, water supply and 

medicinal plants. Lake macrophytes were surveyed on zones (3 x 3 meters) distributed along 2 

permanent transects at right angles to one another. The number of zones varied between lakes 

according to their size. The distance between zones was 3 to 5 meters. All species (amphibious, 

aquatic) were inventoried, however, only hydrophytes were used in the analyses. Field surveys were 

executed between February and July over the period 2005-2013. 

 

New Zealand 

Macrophyte data was drawn from 205 lakes that were surveyed using the “Quick Survey Method” 

of Clayton (1983). Surveyed lakes represented mostly of natural water bodies; however, 28 

artificial reservoirs were included in the data. As a result, the lakes included those of volcanic 

origin, glacial formation, dammed rivers, dune, peat and land slip-formed lakes. Lakes were biased 

towards larger waterbodies located in accessible and populated areas. Consequently lakes included 

those influenced by anthropogenic nutrient enrichment or by the introduction of alien plants and 

fish. The timing of surveys was primarily in the austral spring to autumn (November to April), 

however most submerged species are perennial and present year round. Between 1 and 50 sites 

were assessed, with generally more sites in larger lakes. At each site scuba divers covered a 2 m 

wide transect from the shoreline water level to the deepest extent of vegetation, identifying all plant 

species seen, with the exception of bryophytes.  

 

Norway 

The studied 30 high-alkalinity lakes are small in surface area, varying from oligotrophic to 

eutrophic status and subject to agricultural land use pressure. These lakes situate in Nord-Trøndelag 

county in the middle of Norway. Lake macrophytes were surveyed along four orthogonal transects 

perpendicular to the lake shore and situated approximately at its intersection with the four cardinal 

points (Viana et al., 2014). In addition, the rest of the lake and its edges were visited, and any 

additional species recorded. The surveys were carried out during the peak of the growing season in 

1998, so that all species present in the lake through the season could be detected. Only hydrophytes 

were used in the analyses. 

 

Poland 

All of the 475 lakes are lowland (<200 m a.s.l.), with high-alkalinity non-coloured waters, but differ 

in morphometry and trophy. Data on macrophytes were collected in the period 2004-2012 within 

the national lake monitoring programme (425 lakes) and other research projects. Lake macrophytes 

were surveyed between June and September using the unified field survey procedure based on belt 

transect method (Ciecierska and Kolada, 2014). The number of transects varied depending on lake 

size; however, sampling effort has not influenced previous studies on macrophyte community 
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compositions (Kolada et al, 2014). Within the phytolittoral of each lake, the maximum colonisation 

depth, the mean vegetation coverage and the relative cover of all the aquatic and emergent plant 

communities were determined. Only hydrophytes were used in our work. 

 

Salga project (Brazil, Uruguay and Argentina) 

The studied lakes situated across the three countries and were small (0.09–2.53 km
2
) shallow (mean 

depth <4.5m) and varied greatly in the degree in which they were impacted by anthropogenic 

pressures (i.e., agriculture and urban development) (Kosten et al., 2009a). Lake macrophytes were 

surveyed based on observations along 3 – 8 parallel transects perpendicular to the maximum length 

of the lake and an additional 20 randomly located points. The number of transects varied with the 

shape and size of the lake. Observations were made from a boat using a rake when necessary 

(Kosten et al., 2009b; Kosten et al., 2009c). The surveys were done during summer (lakes at 

latitudes below 30
o
S) or during dry season (lakes above 30

o
S) between November 2004 and March 

2006 by the same team. 

 

Spain 

We enclose data on 66 water bodies holding macrophyte flora and sampled between 2005 and 2009 

across Catalonia (NW Spain). The data set includes a diversity of water body typologies from 

alpine lakes (at high altitude with oligotrophic soft-waters), karstic lakes (high alkaline waters), 

coastal lagoons (at the shoreline, with brackish waters), permanent ponds and temporary pools 

(small ponds with annual desiccation period). Water bodies were usually small and shallow and 

were located along a large altitudinal range (0 - 2573 m a.s.l.). Sampling was conducted by 

snorkeling, scuba diving or walking with waders around all the water body and collecting 

macrophyte samples at the different assemblages that were recognized by visual inspection 

(Chappuis et al., 2014).  

 

 Sweden 

The studied 379 lakes varied in their environmental conditions and subjectivity to anthropogenic 

pressures. Macrophyte surveys were conducted between 2008 and 2013 using a transect method, in 

which the transects were placed perpendicular to the shoreline and distributed around the lake, from 

the upper eulittoral to the outer limit of vegetation. The number of transects varied according to lake 

size with larger lakes having more transects and vice versa. Species were identified by diving along 

the transects with 0.5m in 20-cm depth intervals and in plots of ca. 25 × 50 cm (Naturvårdsverket, 

2010).  

 

Switzerland 
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The water bodies (i.e. ponds and small lakes, with an area less than 1 ha) included in this study are 

scattered throughout Switzerland along an altitudinal gradient ranging from lowland (305 m.a.s.l.) 

to alpine areas (2191 m a.s.l.). A fifth of them are of natural origin, whereas the other originated 

from past or present anthropic activities. The macrophytes of all ponds and lakes were surveyed 

using a standardized method based on plot sampling (0.5 x 0.5m) along transects (Oertli et al., 

2005). The transects were positioned perpendicularly to the longest axis of the water body, at 

intervals of 5 m for small and 20 m for larger ponds. The number of plots was proportional to the 

area of the water body and positioned at 5m intervals along transects. The surveys were carried out 

between June and September over the period 1996 -2004.  

 

US state of Florida 

The 205 Florida study lakes ranged from oligotrophic to hypereutrophic with average chlorophylls 

ranging from < 1.0 µg/L to over 150 µg/L. The lakes were generally shallow and small with 75% of 

the mean depths less than 4.0 m and 75% of the surface areas less than 200 ha. Plant sampling was 

conducted during summer months between 1991 and 2013 with a varying number of transects per 

lake depending on the size of the lake (generally 10 transects per lake). The transects were placed 

uniformly around the lake and went from open water through the littoral zone of each transect. 

Plants were collected with divers in deep-water areas and rakes in shallow areas and all identified to 

species. In addition to species composition, total abundance of all plants in each lake (PAC: percent 

area covered and PVI: percent volume infested with aquatic plants) was estimated using 

ecosounding technologies. Both aquatic plant species composition and abundance was measured to 

examine plant relations to the Limnology of Florida lakes and to assist state agencies with the 

management of aquatic plants. 

 

US state of Minnesota 

Aquatic macrophyte data from 441 lakes were used, covering the entire US state of Minnesota. 

Environmental conditions of the study lakes varied from more natural water bodies with lower 

nutrient and alkalinity values in the northern part of the state to severely anthropogenic-impacted 

lakes with high trophic status situated in the south (Alahuhta, 2015). The macrophyte data were 

collected by the Minnesota Department of Natural Resources (Section of Fisheries) between 1992 

and 2003. The aquatic plant species were sampled between July and August using a transect 

method, in which transects were evenly placed around the lake. The 6-m wide transects ran 

perpendicular to the shore to the maximum depth of vegetation cover, and the number of transects 

varied depending on lake size. The species were identified from a boat with the help of a grapple. 

 

US state of Wisconsin 

Macrophyte data from 409 Wisconsin lakes were surveyed between May and September from 

2005-2012 using a point-intercept method as outlined in Hauxwell et al. 2010. Species were 
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observed from a boat using a double-sided rake sampler at a grid of points projected onto the 

surface of each lake. Spatial resolution of sample points was calculated as a function of estimated 

lake littoral area and shoreline complexity as in Mikulyuk et al. 2010. Spatial extent covered the 

three lake-rich ecoregions of Wisconsin and lakes represent the full gradient of anthropogenic 

impact, primary productivity, alkalinity, and hydrologic type present in the region (Omernik, 2000; 

Riera et al., 2000; Mikulyuk 2010).  
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Appendix S2. An example of convex hull drawn for UK macrophyte data. 
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Appendix S3. Correlation matrix among environmental variables used in the study. Clay: modelled soil clay, No of spp.: Number of species 

recorded in lakes within a region, Org. soil C: Organic soil carbon, Annual °C: Annual temperature, Waters: Proportion of freshwaters within a 

region, p: *** ≤0.001, **<0.05, *<0.1. 

 Alkalinity 

range 

Altitude, 

mean 

Altitude, 

range 

Clay Latitude Org. soil C, 

range 

Spatial 

extent 

Annual °C, 

mean 

Annual °C, 

range 

Waters 

Alkalinity range 1 0.01 0.29 -0.03 0.01 -0.10 0.52** 0.01 0.29 0.08 

Altitude mean  1 0.73*** 0.37* -0.22 0.03 -0.11 0.01 0.57** -0.33* 

Altitude range   1 0.34* -0.16 0.02 0.27 0.04 0.92*** -0.35* 

Clay    1 -0.76*** -0.56** -0.31* 0.82*** 0.22 -0.44** 

Latitude     1 0.35* 0.11 -0.83*** -0.12 0.24 

Org. soil C, 

range 

     1 -0.54** -0.51** 0.26 0.39* 

Spatial extent       1 -0.43** -0.48** 0.08 

Annual °C, 

mean 

       1 -0.03 -0.41* 

Annual °C, 

range 

        1 -0.24 

Waters          1 
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Appendix S4. Relationships between pairwise-site beta diversity dissimilarities (i.e., Sørensen, species turnover and nestedness) and mean 

altitude, altitudinal range and latitude. 
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