716 research outputs found

    Windy Ridge: A Prehistoric Site in the Inter-Riverine Piedmont in South Carolina

    Get PDF
    Windy Ridge, 38FAl18, is a prehistoric site located on a ridge top in the inter-riverine zone between the Catawba-Wateree and Broad rivers in Fairfield County in the Piedmont portion of South Carolina. In May and June, 1977, archeological excavations were conducted at Windy Ridge by John H. House and Ronald W. Wogaman of the Institute of Archeology and Anthropology, University of South Carolina, Columbia. These excavations were funded by the (then South Carolina Highway Department) South Carolina Department of Highways and Public Transportation for the purpose of mitigating the loss of archeological resources due to construction of Interstate 77. It has been requested that Windy Ridge and thousands of similar lithic artifact scatters on upland land surfaces throughout the southern Piedmont represent hunting camps that were occupied for brief periods, perhaps seasonally, throughout the Archaic. The archeological research at Windy Ridge was designed to examine this hypothesis in the case of a single site. Two alternative hypotheses of the overall function of such a site in prehistoric settlement systems and two hypotheses of the potential biotic resources extracted from the environment at such a site were formulated and a set of archeological test implications were outlined for each hypothesis. The sampling strategy and excavation techniques together with the analytical methods employed in the laboratory were designed to fulfill the data requirements of these hypotheses. Artifacts from diverse cultural periods spanning 8000 years of prehistory were found throughout the sandy loam upper soil horizons at Windy Ridge. Though no stratigraphic separation of components was present, it was possible, analytically, to make some minimal segregations of the assemblage into chronologically and functionally meaningful units. It was inferred that throughout most of prehistory the aboriginal utilization of Windy Ridge consisted of many brief episodes of occupation, each involving the manufacture and/or use of a relatively narrow range of stone tools. The assemblage appears to be dominated by the outputs of manufacture of local raw materials and the use of hafted bifacial cutting tools. The spatial structure of the site suggests that quantitatively and spatially small units of cultural deposition characterized its formation during most prehistoric periods. The Middle Archaic component at Windy Ridge, however, seems to represent rather large units of synchronic deposition such as might be expected if prolonged or frequently recurrent use of permanent facilities had occurred during this interval at Windy Ridge. On the whole, the data tend to support the hypothesis that Windy Ridge represents a series of brief episodes of occupation involving specialized extractive activities, perhaps hunting and butchering of white-tailed deer. This inference is far from conclusive, and the data suggest significant technological, functional and organizational differences among prehistoric components at Windy Ridge.https://scholarcommons.sc.edu/archanth_anthro_studies/1001/thumbnail.jp

    Polarographic Study of Oxaloacetate Reduction by Isolated Pea Chloroplasts

    Full text link

    Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic

    Get PDF
    Despite the fact that the 2009 H1N1 pandemic influenza strain was less severe than had been feared, both seasonal epidemics of influenza-like-illness and future influenza pandemics have the potential to place a serious burden on health services. The closure of schools has been postulated as a means of reducing transmission between children and hence reducing the number of cases at the peak of an epidemic; this is supported by the marked reduction in cases during school holidays observed across the world during the 2009 pandemic. However, a national policy of long-duration school closures could have severe economic costs. Reactive short-duration closure of schools in regions where health services are close to capacity offers a potential compromise, but it is unclear over what spatial scale and time frame closures would need to be made to be effective. Here, using detailed geographical information for England, we assess how localized school closures could alleviate the burden on hospital intensive care units (ICUs) that are reaching capacity. We show that, for a range of epidemiologically plausible assumptions, considerable local coordination of school closures is needed to achieve a substantial reduction in the number of hospitals where capacity is exceeded at the peak of the epidemic. The heterogeneity in demand per hospital ICU bed means that even widespread school closures are unlikely to have an impact on whether demand will exceed capacity for many hospitals. These results support the UK decision not to use localized school closures as a control mechanism, but have far wider international public-health implications. The spatial heterogeneities in both population density and hospital capacity that give rise to our results exist in many developed countries, while our model assumptions are sufficiently general to cover a wide range of pathogens. This leads us to believe that when a pandemic has severe implications for ICU capacity, only widespread school closures (with their associated costs and organizational challenges) are sufficient to mitigate the burden on the worst-affected hospitals

    Meteorological influences on respirable fragment release from Chinese elm pollen

    Full text link
    Exposure to airborne pollen from certain plants can cause allergic disease, leading to acute respiratory symptoms. Whole pollen grains, 15&ndash;90 &mu; m-sized particles, provoke the upper respiratory symptoms of rhinitis (hay fever), while smaller pollen fragments capable of depositing in the lower respiratory tract have been proposed as the trigger for asthma. In order to understand factors leading to pollen release and fragmentation we have examined the rupture of Chinese elm pollen under controlled laboratory conditions and in the outdoor atmosphere. Within 30 minutes after immersion in water, 70% of fresh Chinese pollen ruptures, rapidly expelling cytoplasm. Chinese elm flowers, placed in a controlled atmosphere chamber, emitted pollen and pollen debris after a sequential treatment of 98% relative humidity followed by drying and a gentle disturbance. Immunologic assays of antigenic proteins specific to elm pollens revealed that fine particulate material (D p &lt; 2 &mu; m) collected from the chamber contained elm pollen antigens. In a temporal study of the outdoor urban atmosphere during the Chinese elm bloom season of 2004, peak concentrations of pollen and fine pollen fragments occurred at the beginning of the season when nocturnal relative humidity (RH) exceeded 90%. Following later periods of hot dry weather, pollen counts decreased to zero. The Chinese elm pollen fragments also decreased during the hot weather, but later displayed additional peaks following periods of more moderate RH and temperature, indicating that pollen counts underestimate total atmospheric pollen allergen concentrations. Pollen fragments thus increase the biogenic load in the atmosphere in a form that is no longer recognizable as pollen and, therefore, is not amenable to microscopic analysis. This raises the possibility of exposure of sensitive individuals to pollen allergens in the form of fine particles that can penetrate into the lower airways and pose potentially severe health risks.<br /

    Trapped O2 and the origin of voltage fade in layered Li-rich cathodes

    Get PDF
    Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
    • …
    corecore