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Abstract 
One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (Unknown 
or Variable composition, Complex reaction products and Biological materials). Because the inherent complexity and 
variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical 
characteristics or other data, we hypothesized that animal alternatives new approach methodologies (NAMs), including 
in vitro test-derived biological activity signatures to characterize substance similarity, can be used to support grouping 
of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types 
representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure 
estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-
confidence in vitro data are used to determine whether current groupings of these petroleum substances, based largely 
on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based 
groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also 
showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary 
cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based 
on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of 
UVCBs, to assist in identification of representative substances in each group for testing when needed, and to fill data 
gaps by read-across. 
 
 
 
1 Introduction 
 
Substance identification is required before exposure, hazard or risk evaluations are performed by industry or regulatory authorities. 

Most substances that are evaluated with respect to human or ecological risks are of the “mono-constituent” type, they contain one 

main constituent in at least 80% (w/w), even after accounting for impurities (European Chemicals Agency, 2015). Other types are 

deemed to be “multi-constituent” substances and “UVCBs” (Unknown or Variable composition, Complex reaction products, and 

Biological materials). The latter comprise about 20% of all recent substance registrations in the European Union (ECHA, 2017) 

under Regulation on Registration, Evaluation and Authorisation of Chemicals (REACH). UVCBs are challenging for regulatory 

decision-making because of few established frameworks for their evaluation under current chemical regulatory regimes (ECHA, 

2017).  
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Petroleum substances are prototypical UVCBs (Clark et al., 2013), and their complex and variable nature is the 

consequence of their manufacturing processes. They are primarily produced by the distillation of petroleum feed stocks, typically 

followed by additional processing steps such as solvent extraction, hydro-desulfurization, or hydrogenation (McKee et al., 2015). 

As a result, these are complex substances containing a large number of individual hydrocarbon molecules that can be 

aliphatic/paraffinic (straight chain or branched), alicyclic/naphthenic (containing primarily cyclo-paraffinic constituents that are 

primarily saturated hydrocarbons), or aromatic. Petroleum substances of different types can vary significantly in their chemical 

complexity and chemical diversity based on degree of refinement, and may contain any or all of these types of constituents in 

varying concentrations based on their respective manufacturing process. While petroleum substances of particular types and end-

uses may have compositional differences, their compositional variation is limited to specified ranges based on the technical 

specifications of each product. The challenge of grouping petroleum-substances is further complicated by the reality that currently 

used substance nomenclature, due to the inherent chemical complexity of UVCBs, is not uniquely associated with chemical 

composition, but relies on manufacturing process, associated physico-chemical characteristics, and product performance 

specifications. 

To identify hazards of petroleum substances, toxicology testing is conducted on the whole substance (in vivo), or on 

exposure-relevant fractions of petroleum substances (in vitro), rather than on individual constituents or groups of constituents. 

Where no data is available for certain endpoints on a substance, alternative methods to fill data gaps in the registration requirements 

have been suggested, including the application of read-across (European Chemicals Agency, 2015). Grouping of substances which 

are compositionally similar is one path to reduce animal testing, provided there is sufficient information on the related compounds 

and sufficient reason to believe that the related compounds may have similar toxicological properties. However, existing grouping 

approaches for petroleum substances, that are currently based on the manufacturing process, physico-chemical characteristics 

(CONCAWE, 2017), and hazard data (McKee et al., 2015), have been challenged by the regulatory agencies (Ball et al., 2014).  

Complementary approaches to grouping of petroleum-based UVCBs have been proposed based on in vitro testing 

(Grimm et al., 2016; Kamelia et al., 2019), structure-activity analysis (Kutsarova et al., 2019; Dimitrov et al., 2015), or novel 

analytical chemistry methods (Grimm et al., 2017; Onel et al., 2019). Similar approaches have been applied to other categories of 

UVCBs (Catlin et al., 2018). Because of the strong impetus to avoid unnecessary vertebrate animal testing, a number of recent 

changes to the regulatory requirements in the US and EU provide for in vitro testing or quantitative structure-activity relationship 

analysis as alternatives for whole-animal toxicity testing (Herrmann et al., 2019; Malloy et al., 2017; Kavlock et al., 2018).  

Therefore, this study tested the hypothesis that the challenge of demonstrating substance similarity to support grouping of 

petroleum substances can be improved using data derived from New Approach Methodologies (NAMs) (i.e., in vitro bioactivity) 

linked to the available compositional data (physical and analytical chemistry data). We tested the effects of 141 petroleum 

substances in 15 human cell types to derive a comprehensive set of phenotypes that were used to group substances based on their in 

vitro bioactivity. We found that NAMs data can be used to rank individual UVCBs in a manner highly concordant with their 

expected in vivo hazard potential based on their chemical composition. Bioactivity data-based groupings of petroleum substances 

were largely consistent with the manufacturing class-based categories. Furthermore, the NAMs data can be used to identify 

representative substances of each category for further testing and subsequent read-across. 

 
 
2 Materials and Methods  
 
Chemicals  
All chemicals used in these studies, except for petroleum substances, were obtained from Sigma-Aldrich (St. Louis, MO), unless 

otherwise noted. Samples of petroleum substances were supplied by Concawe (Brussels, Belgium). To enable in vitro bioactivity 

profiling experiments of petroleum substances, extraction of petroleum substances into DMSO was performed using American 

Society for Testing and Materials standard procedure (ASTM International, 2014) as outlined in Figure 1. The DMSO extraction 

procedure used herein was designed to concentrate the ‘biologically active’ fraction (i.e., mostly 3-7 ring polycyclic aromatics, but 

also other polar constituents) of each petroleum substance; the extracts obtained using this method are used routinely for safety 

testing (e.g., mutagenicity) and chemical characterization of the refinery streams (ASTM International, 2014). Briefly, 4 grams of 

each petroleum substance (Tab. 1 and Tab. S11) was first dissolved in 10 ml of cyclohexane, 10 ml of DMSO (Fisher Scientific, 

Waltham, MA) was added and the mixture was vigorously shaken for several minutes. The DMSO layer was removed using a glass 

pipette and the cyclohexane was re-extracted with an additional 10 ml of DMSO. Both polycyclic aromatic compounds (PAC)-

enriched DMSO layers were combined and diluted 2:1 with two volumes of 4% (w/v) sodium chloride solution. Following 

subsequent extraction with 20 mL and 10 mL cyclohexane to isolate the PAC fraction, the organic layers were washed twice with 

distilled water and filtered through anhydrous sodium sulphate. Details of additional chemicals that were used as references (Tab. 

S21), or cell type-specific positive controls or reagents (Fig. S1, Supplemental Files 1 and 21) are provided as specified. 

 
In vitro study design  
Petroleum substance extracts (Tab. S11) and reference chemicals representing the major known structural classes of chemistries in 

petroleum substances (Tab. S21) were processed to create a dilution series in DMSO.  Overall, 4 serial 1-log10 dilutions of each  
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Fig. 1: General schematic diagram of the extraction 
procedure that was used in these studies  
The procedure was based on ASTM International (2014) standard 
method (E1687-10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Experimental plate design  
Test substances (petroleum-based UVCBs) and other 
chemicals were arrayed on the individual plates for 
each dilution factor. Location of negative, positive and 
replication (intra- and inter-plate) controls on each plate 
are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extract and reference substance were created (Fig. S21) and aliquoted into 384-well “master” plates (Masterblock 384-well, V 

bottom, Deepwell polypropylene plate; Cat. No. 781271; Greiner Bio-One North America, Monroe, NC) as follows. Plates (Fig. 2) 

contained 308 wells (all outer wells were filled with 200 µL of sterile distilled water to enhance temperature balance for the entire 

plate and were not used in the experiments) with one serial dilution of each of 141 petroleum substances and 20 reference 

chemicals, 20 intra-plate replicates (duplicate of the same dilution for 10 UVCBs and 10 reference chemicals), 20 inter-plate 

replicates (4 serial dilutions of 5 UVCBs), 55 negative controls (14 media, 13 DMSO (0.25-0.5%, final concentration identical to 

that in the assay wells for each cell type), and 28 “method blank” vehicle (see Fig. 1, 0.25-0.5% as for DMSO)). A total of 52 wells  
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Tab. 1: Petroleum substance categories and substances used in this study  
See Table S11 for a complete listing of substance names, CAS and EC numbers and other information. 

Petroleum substance category Abbreviation N of samples in category 

Petrolatums P.LAT 3 

Paraffin and hydrocarbon waxes/slack waxes WAX 10 

Low boiling point naphthas (gasolines) NAPHTHA 10 

Other lubricant base oils/highly refined base oils BO 33 

Kerosines/MK1 diesel fuel KER 10 

Foots oils FO 3 

Other gas oils OGO 4 

Bitumens/oxidized asphalt BIT 5 

Residual aromatic extracts RAE 2 

Treated distillate aromatic extracts TDAE 2 

Heavy fuel oil components HFO 27 

Unrefined/acid treated oils UATO 4 

Cracked gas oils CGO 8 

Vacuum gas oils, hydrocracked gas oils & distillate fuels VHGO 10 

Straight-run gas oils SRGO 6 

Untreated distillate aromatic extracts UDAE 4 

 
Tab. 2: Cell types used in these studies  
See Table S31 for a complete list of assays, phenotypes, time points, and quality control criteria. 

Organ/Tissue Origin Cell type 
name 

Number of 
phenotypes 

QC "Pass" 
phenotypes 

QC "Fail" 
phenotypes 

Skin Malignant melanoma A375 3 2 1 

Lung Epithelial carcinoma A549 3 0 3 

Liver Cholangiosarcoma HEPARG 3 1 2 

Liver Hepatocellular carcinoma HEPG2 3 2 1 

Lung Microvascular endothelial cells HLMVEC 4 2 2 

Gut Colorectal adenocarcinoma HT29 4 0 4 

Brain Glioblastoma LN229 4 2 2 

Breast Epithelial adenocarcinoma MCF7 3 2 1 

Bone marrow Neuroblastoma SH-SY5Y 4 2 2 

Heart iPSC-derived cardiomyocytes CM 14 12 2 

Liver iPSC-derived hepatocytes HEP 6 4 2 

Blood vessel iPSC-derived endothelial cells ENDO 9 4 5 

Blood vessel Umbilical cord endothelial cells HUVEC 6 5 1 

Brain iPSC-derived neuronal cells NEUR 4 4 0 

Blood iPSC-derived macrophages MACRO 1 0 1 
   

71 42 29 

 

were left empty in the “master” plates so that cell type-specific positive controls (see Fig. S1 and Supplemental Files 1 and 21 for 

details) can be added before experiments with each cell type. Plates were sealed with aluminum film and stored at -80ºC until used. 

Copies of each master plate were prepared for use in all in vitro experiments. The final concentration of DMSO in assay wells 

following addition of test substances was 0.25-0.5% (v/v), depending on the cell type, as detailed in Supplemental Files 1 and 21. 

 
In vitro experiments  
A total of 15 human cell types were used in these experiments (Tab. 2). Cell type and vendor selections were based on the 

following considerations. Cells were chosen to be of human origin and to represent diverse organs/tissues. We used both “primary” 

cells, iPSC-derived cells, as well as a number of established cell lines. These in vitro models had to be reproducible (i.e., a 

particular cell/donor can be obtained from a commercial source) and suitable for evaluation of both “functional” and “cytotoxicity” 

endpoints so that we could assess the specificity of the effects of test compounds. Five of these cell types (hepatocytes, endothelial 

cells, neurons, cardiomyocytes and macrophages) were human induced pluripotent stem cell (iPSC)-derived (FujiFilm-CDI, 

Madison, WI). One cell type was primary human umbilical vein endothelial cells (HUVEC) from Lonza (Basel, Switzerland). Eight 

cell types (A375, A549, HepG2, HLMVEC, HT29, LN229, MCF7, and SH-SY5Y) were from ATCC (Manassas, VA). HEPARG 

cells were from Sigma-Aldrich. All cells were cultured as recommended by their supplier (see Supplemental Files 1 and 21 for 

details).  
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 Cells were plated in 384-well plates in densities recommended by the supplier, using optimized media supplied by the 

same company or optimized for density by experimentation for each cell line. Cells were cultured without treatment for a period of 

time required to achieve functional capacity. Plating density, cell culture conditions and duration are detailed in Supplemental Files 

1 and 21. Cells were treated with petroleum substances and chemicals in a series of dilutions to evaluate concentration-response as 

described above (Fig. 2). For each cell line, a number of phenotypes (Tab. 2 and Tab. S31) were evaluated using high-content 

imaging and other read-outs as detailed in Supplemental Files 1 and 21. Assay specific controls (Fig. S2 and Supplemental Files 1 

and 21) that were unique to each cell type were used to verify that each cell type exhibited expected functional and cytotoxicity 

responses.   

 
Data processing and quality assurance  
The experimental design consisted of running all of the petroleum substances on a single plate at one concentration (Fig. 2). As a 

consequence, the concentration response can be evaluated only when considering all four plates (each at a different dilution). To 

account for this, a number of inter- and intra-plate controls were included to ensure that the concentration response was not affected 

by artifacts of the experimental design.  Inter-plate controls consisted of 5 petroleum substances which were present in 

concentration response (all four dilutions) on each plate. These responses could then be compared to the concentration response 

across the four plates to ensure that similar response occurred within a plate and across plates.  Due to running only a single 

replicate, intra-plate controls were added to ensure that the single values were consistent within a plate.  Ten petroleum substances 

and 10 reference chemicals were assayed as a duplicate on each plate.  These were arrayed at the same concentration as those 

normally-placed substances and were used to ensure reproducibility within a plate. 

Raw data generated during in vitro experiments was normalized to the average of “method blank” vehicle control (Fig. 1) 

wells.  The normalized values represent a percent response to the method blank. Normalization was performed for all raw values 

assessed, including the positive and negative controls. The normalization process followed the formula (1): 

 
Normalized Value = (Raw Value)/(Average of “Method Blank” Wells)×100 (1) 

 

To ensure the integrity of the data, several metrics were calculated for each phenotype. All data for quality assurance (Fig. 3) of 

each cell type are included in Supplemental Files 1 and 21. Quality control was programmatically conducted to identify excessive 

variation in 3 ways in this high-dimensional high-throughput experiment. An assay was considered QC “Fail” if any assay flag was 

called across three assessments of experimental variation. First, plate controls were examined. For a given plate (consisting of a 

single cell-type/assay/dose combination), method blank controls were mean centered to 100, while DMSO-/media-controls were 

normalized to method blanks. An assay was flagged for excessive control variation if method blank inter-quartile range (IQR) 

exceeded the 75/125 boundary, or if DMSO-/media-controls entire IQR existed outside the 80/120 limits of the mean-centered 

(mean=100) method blank controls. Second, excessive inter-plate variation was assessed across dose response. Five substances 

were plated on each dose plate as complete dose response. This means each dose plate (1000× through 1×) had 5 substances that 

were plated for each of 1×, 10×, 100×, and 1000× concentrations yielding 4 data points at each dose. The single test substance data 

point on the plate was then compared to the mean and standard deviation (SD) to the other 4. A substance was flagged if its value 

exceeded 1.75SD for 2 or more doses.  If this occurred for 3 or more chemicals, the assay was flagged.  Third, excessive intra-plate 

variation was assessed with 20 substances that were plated in duplicate on each plate. The IQR of method-blank controls for the 

plate were compared to the IQR of a scaled replicate difference (((rep1 – rep2)/sqrt(rep1*rep2))*100) of the 20 substances and a 

concentration was flagged if the IQR (20 substances) was greater than 1.75× IQR of the method blank controls for the respective 

plate. The assay was flagged if more than 1 concentration was flagged. The number of pass/fail phenotypes for each cell type is 

shown in Table 2. Details on each quality control “flag” for cell type/phenotype are provided in Table S31.  

 
Fig. 3: Data analysis workflow  
Extensive quality control (QC) 
steps were used to filter assay/cell 
line combinations to ensure high 
concordance among controls and 
high intra- and inter-plate 
reproducibility. For the assays 
passing QC, points of departure 
were estimated using logistic (Hill) 
function curve fitting, and overall 
and cell-type-specific measures of 
bioactivity computed across the 
assays. Analysis of bioactivity was 
further grounded in comparisons 
to polycyclic aromatic content. 
Finally, existing UVCB categories 
were compared to unsupervised 
clustering of the emergent data, as 
well as using trained (supervised) 
models to “predict” the categories.  
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Dose-response analysis and derivation of the points of departure  
After normalization and quality control, a point-of-departure (POD) was calculated for all phenotypes that were determined to pass 

quality control (Tab. S31). Vehicle control-scaled data for each test substance and phenotype were fitted to a curve with a nonlinear 

logistic (Hill) function to determine POD values, defined as the concentrations at which the fitted curve exceeds one standard 

deviation above or below the mean of vehicle-treated controls, using R software-based scripts (Supplemental File 31) as previously 

reported (Sirenko et al., 2013). The choice of one standard deviation “benchmark response” was based on the US EPA guidance for 

dose-response modeling and determination of the point-of-departure values (U.S. EPA, 2012), as well as empirical testing of 

various thresholds as detailed in (Sirenko et al., 2013) which showed that a choice of one standard deviation generates consistently 

high classification accuracy. Each concentration-response graph with the logistic fit was visually inspected to ensure goodness of 

fit.  Several aspects were considered including degree of fit, trend of data points, and consideration of removal of outlier data. The 

final POD was derived using a decision tree shown in Figure S31.  

 
Calculation of the Toxicological Priority Index (ToxPi)  
ToxPi is a computational approach for data integration (Reif et al., 2010, 2013). ToxPi Graphical User Interface (Marvel et al., 

2018) was used to integrate and visualize data from different cell types and phenotypes. POD values for each phenotype passing 

quality control were inversely normalized on a 0–1 scale with 0 representing the highest POD value in a given data set (i.e. the 

lowest observed bioactivity) and 1 representing the lowest POD value (i.e. the highest observed bioactivity) using formula (2): 

 

𝑇𝑜𝑥𝑃𝑖 𝑉𝑎𝑙𝑢𝑒 = 1 − 
𝑙𝑜𝑔10(𝑃𝑂𝐷)−𝑙𝑜𝑔10(𝑃𝑂𝐷min)

𝑙𝑜𝑔10 (𝑃𝑂𝐷𝑚𝑎𝑥)− 𝑙𝑜𝑔10 (𝑃𝑂𝐷min)
  (2) 

 

Clustering and classification analyses  

We used two approaches to grouping petroleum substances based on the biological profiling data produced in this study. In an 

unsupervised analysis, substances were grouped based on the similarity in their bioactivity profiles, without prior knowledge of 

manufacturing stream categories. To evaluate the outcome of such grouping, we included a quantitative metric into the 

unsupervised analysis workflow to assess the correspondence of the outcome to the original categories of each chemical. The 

details of the unsupervised analysis workflow are described elsewhere (Onel et al., 2019). Briefly, clustering was performed using 

the hclust function in R, using average linkage clustering applied to a Euclidean distance metric on centered-scaled data (essentially 

Pearson correlation), which we have previously found to be reasonably robust (Onel et al., 2019). The Fowlkes-Mallows (FM) 

index (Fowlkes and Mallows, 1983), a measure of similarity of two clusters, was calculated to enable quantitative comparative 

assessment between groupings achieved using each dataset to the known chemical categories. The higher the FM index, the more 

similar the grouping based on in vitro or chemical descriptor data was to the a priori determined grouping as shown in Table 1. The 

FM index ranges from 0.0 (no correspondence) to 1.0 (perfect correspondence). One-sided P-values for the FM index (using the 

null hypothesis of random assignment) can be obtained using a standard z-statistic (Fowlkes and Mallows, 1983). However, to 

improve confidence in the findings, and to compare FM indices, we adopted a permutation approach. Specifically, we performed 

100,000 permutations of the actual sample groupings, and for each clustering computed the resulting FM index for each 

permutation to compute a one-sided P-value. In order to compare the FM index for two clusterings (which we label A and B, 

respectively), we compared the observed FMA-FMB value to the permutation distribution of |FMA-FMB| to obtain a two-sided P-

value. 

In the supervised analysis, 8 analytical measurements and 42 cell assay bioactivity profiles (see below) were used to train 

a machine-learning statistical model using the Prediction Analysis of Microarrays (PAM) package in R (Tibshirani et al., 2002) to 

predict the existing categorizations as shown in Table 1. In contrast to the unsupervised approach, a supervised model is trained to 

recognize the features that are most predictive of the pre-defined classes. Importantly, the approach can be used to identify 

substances that are difficult to classify, or pre-defined classes that are difficult to distinguish from each other. As some of the 

UVCB categories were small, k-fold cross-validation methods were difficult, as some random-fold outcomes might include zero 

instances of a category. Thus, our application of PAM used a leave-one-out cross-validation, and shrinkage threshold of 1.28 (the 

90% quantile of a standard normal distribution). In order to understand the “null” accuracy of a random classifier, we performed 1 

million permutations of the categorizations, matched up with the actual category vector, recording the accuracy (mean number of 

category-matching UVCBs) for each permutation. The 95th percentile of these permuted accuracy values (0.163=16%) was then 

used as a null significance threshold to compare the accuracy for the actual classification rules. 

 
Polycyclic Aromatic Compound (PAC) Analysis 
Weight percentages of the polycyclic aromatic compounds in all tested petroleum substance samples were determined by gas 

chromatography-coupled mass selective detection (GC/MSD) as detailed previously (Roy et al., 1988). Briefly, each substance was 

extracted as detailed above and dried. The amount of each extract was then determined using the weight difference of the empty 

flask and following solvent evaporation. The extract was then dissolved in cyclohexane to a final concentration of 50 mg/mL and 

used for analytical assays. Sample separation was achieved on a Zebron-5HT capillary column (30 m; 0.25 mm; 0.25 mm; 

Phenomenex, Torrance, CA). Quantitative integration of the chromatograms was achieved using standards of naphthalene, 

phenanthrene, 1,2-benzanthracene, benzo[a]pyrene, benzo[g,h,i]perylene, and coronene. The resulting PAC profiles consist of 

weight percentages by ring number and are listed as Table S41. 
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3 Results 
 
This study tested an integrative approach based on alternative to animal models to support biological coherence and integrative 

grouping of complex petroleum substances. We reasoned that bioactivity “signatures” of these substances in a large number of 

human cell types will be informative to (i) assess the validity of existing groupings, and (ii) determine whether “representative” 

substances can be identified in each category so that they can be further considered for regulatory-required assays and that 

information used for read-across in each group. Both goals will increase effectiveness of any future testing and facilitate a NAM-

informed approach to meet regulatory requirements. By including in this project a large number of petroleum substances that are 

registered under REACH in the European Union (CONCAWE, 2017), we aimed to provide broad coverage of the categories and 

individual substances. This dataset is unique insofar as it represents the largest standardized and tightly quality-controlled NAM 

dataset on petroleum substances. 

Quality control analysis (Fig. 3) of the data that was collected on 141 petroleum substances for a total of 71 phenotypes 

in 15 cell types utilized various controls that were engineered into the experimental design (Fig. 2). All bioactivity assays were 

evaluated to flag assay and cell line combinations with potentially high signal to noise ratios (Tab. 2, Tab. S31). First, during data 

collection phase, several upstream quality control procedures using positive controls were implemented in order to determine that 

the cells were responding according to expectations in the published assays. Second, additional analyses to assess the overall 

quality of the bioactivity profiling data were based on three criteria: (i) concordance of three types of negative controls (media, 

DMSO, and “method blank” vehicle), (ii) inter-plate replicates, and (iii) intra-plate replicates. A total of 42 assays in 12 cell types 

assays were deemed as high quality and reproducibility to satisfy the QC thresholds. The quality control procedures were 

implemented as “flags” for each assay in each cell line so that downstream analyses could be compared in which flagged assays 

were either included or not included. Data from these 42 assays were used in further data analyses. 

 Unsupervised clustering analysis of the data integrated with the ToxPi approach was used to determine whether 

petroleum substances can be grouped based on the bioactivity profiles across all cell types and phenotypes. Figure 4A shows the 

results of clustering with two insets depicting two representative clusters. One shows a low bioactivity cluster and another shows a 

high bioactivity cluster; in both, samples from the same/similar categories (Tab. 1 and Tab. S11) show very similar ToxPi profiles. 

The exception is sample 075 that was from the base oils (“BO”) category and is a clear outlier with respect to its bioactivity as 

compared to other BO samples. However, it is noted that the BO category has larger inherent compositional variability compared to 

other petroleum substance categories. Consequently, sample 075 is likely to represent a less extracted example, and could guide 

selection of a “worst case” candidate for follow-up testing.  

A quantitative comparison of the unsupervised analysis was conducted using the Fowlkes-Mallows (FM) index (Fowlkes 

and Mallows, 1983; Onel et al., 2019). The results of the bioactivity-based clustering, or the data on polycyclic aromatic content 

(PAC) of each sample, a common approach to define health risks of petroleum substances (Redman et al., 2014), were compared to 

the known chemical groupings (Tab. 1) that were used as a reference. Figure 4C shows that the correspondence of clustering to the 

known groupings was highly significant (more accurate than expected by chance) when using either PAC data, bioactivity data, or 

their combination (P<10-5 for all comparisons). Although the clustering correspondence of bioactivity profiles was somewhat 

higher than that based on PAC (3-7 ring) data alone (Fig. 4C), there was no significant difference between the two. Among the 

individual cell types, iCell hepatocytes showed the highest FM index (FM=0.41), albeit it was not significantly different than that 

for other cell types.  

 We also used the in vitro bioactivity data and PAC content to develop supervised predictive models for the 

manufacturing stream-based categories. The term ‘supervised’ denotes that we use the existing categories to train a model and then 

apply a “leave one out” approach to predict in which category the specific UVCB belongs based on its aromatic ring class profile 

(i.e., PAC (3-7 ring)) and/or biological (i.e., ToxPi score from all data combined) profile. The leave-one-out approach ensures that 

the classification accuracy is informative, because each of the 141 UVCBs is held out in succession and not used in training the 

model. Figure 5 shows statistical classification accuracy for 3- to 7-ring PAC data (accuracy 43%) and bioactivity data (accuracy 

38%). The combination of PAC and bioactivity data did not result in a significant increase in classification accuracy (45%). All of 

these values are considerably greater than the null accuracy threshold of 16% described earlier. The categories were ordered by 

mean PAC 3-7 relative content and exact matches are marked in green. One salient feature of classification using bioactivity data 

alone is that predictions tend to concentrate on the two largest categories, BO and HFO. It is also apparent that relatively few of the 

category-assignment errors are in fact assignments to categories of very different PAC 3-7 content (shown in orange). When 

assignments to “distant” categories are considered as most consequential mis-classification, the correct classification rate of the 

bioactivity data alone, or in combination with PAC data, is close to 90%, well above that for the PAC data alone (72%). The 

combination of PAC data and biological data not only yields the highest accuracy, but the spread of classifications across the 

categories is more easily explainable in terms of the 3-7 ring PAC content of the substances related to their observed biological 

activity.  

A different question that can be asked with the bioactivity data on the petroleum-based UVCBs is whether substances 

that belong to a manufacturing stream-based category exhibit similar profiles as this type of information is available to provide 

additional contextualization. Figure 6 shows examples of two categories, heavy fuel oil components (HFO, 27 individual UVCBs) 

and waxes (9 individual UVCBs). The HFO category is defined (CONCAWE, 2017) as streams obtained as either distillates or 

residues from distillation and cracking processes and containing saturated, aromatic and olefinic hydrocarbons in a wide boiling 

point range. The waxes category in this study included substances from three closely related groups – slack waxes, and paraffin and  
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Fig. 4: Unsupervised grouping of petroleum substances  
(A) Clustering dendrogram of the 141 UVCB samples, illustrating that 
clustering reflects both overall bioactivity and specific patterns of 
bioactivity across the cell types. See Table S51 for ToxPi GUI input file that 
can be used to recreate the dendrogram and ToxPi images. (B) ToxPi 
legend representing each included cell type as a colored slice with weight 
indicated in parenthesis based on the number of cell type-specific 
phenotypes included (Table 2). (C) The Fowlkes-Mallows index comparing 
the existing 16 UVCB-category designation of tested petroleum 
substances to unsupervised clustering using polycyclic aromatic 
compound data (PAC, Tab. S41), to the bioactivity summary based on the 
cell assays only (data shown in panel A), and to the combination of the 
two. Red dotted line shows the approximate permutation-based threshold 
of significance, which varies slightly for the three instances shown. 
Permutation-based p-values for clustering correspondence compared to a 
null model were less than 10-5 for each of PAC, bioactivity, and the 
combination.  The accuracy of the three models did not differ significantly 
from each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hydrocarbon waxes. These wax substances are derived from vacuum distilled fractions and separated as a solid by chilling. Many 

of these substances are subject to further intermediate processing such as de-oiling or treatment with acid, clay, active carbon or 

hydrogenation to remove most of the polycyclic aromatic hydrocarbons (PACs). ToxPi profiles of most UVCBs that are classified 

in HFO category look very similar, these substances have relatively high bioactivity across most iPSC-derived cell types, especially 

iCell hepatocytes, commensurate with their high content of PACs. Only two substances, 131 and 007, show a qualitatively different 

ToxPi profile with little effect on iCell cardiomyocytes and neuronal cells; therefore, these two substances may be considered as 

not representative of the overall bioactivity of the HFO category. In the waxes category, much less similarity is evident among the 

individual members; however, all of these substances had a markedly lower bioactivity as compared to HFOs. 

 To determine the overall bioactivity of each manufacturing stream-based category and the heterogeneity of the individual 

UVCBs in each category, we grouped ToxPi scores for all 141 substances (Fig. 7). When all high-quality phenotypes are combined 

to derive a ToxPi score as shown in Figures 4 and 6, a clear pattern in the bioactivity of each category emerges – aromatic extracts 

and gas oils have high mean bioactivity scores, while highly refined and chemically treated substances such as petrolatums and 

waxes have the lowest bioactivity. When data were examined for each cell type separately (Fig. 7 and Fig. S41), additional patterns 

were discernible. For example, the iCell hepatocytes showed separation into two broad bioactivity regions, whereas the iCell 

cardiomyocytes showed a gradient of bioactivity among the categories in the bottom half of bioactivity. At the same time, the data 

from many other tested cell types were not informative with respect to grouping (Fig. S41). It is noteworthy that a high degree of 

heterogeneity was present within each category, especially among HFO and BO categories. This finding is interesting because 

current manufacturing stream-based categories include substances with widely varying PAC content and considerable overlap 

between categories that are not always very similar from a refining perspective. 
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Fig. 5: Analysis of the relationship between analytical (PAC) and 
summarized bioactivity data  
Top (A): The results of supervised analysis in which the UVCB category is 
predicted from the pattern of PAC analytic data using the PAM classification 
procedure. Rows refer to the true category, and columns to predicted category. 
Correct classification counts are shown in green as values on the diagonal. 
Categories are ordered according to median bioactivity score, so 
misclassifications near the diagonal are not severe, while misclassifications into 
categories with substantially different hazard profiles are shown in orange. 
Middle (B): correct classifications and misclassifications using bioactivity 
patterns only, which tends to predict as the most frequent categories of base 
oils and heavy fuel oils. Bottom (AB): correct classifications and 
misclassifications using both analytic and bioactivity data, which shows slightly 
higher accuracy than PAC analytical data alone. Numbers are correct 
classification rate when only exact matches are considered, or (in parenthesis) 
when misclassifications were not into a substantially different hazard category. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To test a hypothesis that in vitro bioactivity profiles may be associated with PAC content of each individual UVCB (Tab. 

S41), we examined correlation between these two parameters (Fig. 8). The bioactivity, expressed as a total ToxPi score for each 

substance, was compared for each UVCB to the 3-7 ring PAC content expressed as a proportion of DMSO-extractable PACs. 

Specifically, 3-7 ring PAC content score was calculated by taking the sum of aromatic ring content (for 3 through 7 ring –

containing constituents) multiplied by the percent total weight of DMSO-extractable PAC (Gray et al., 2013). Consistent with the 

hypothesis, the overall fit based on all in vitro data combined (Fig. 8A) showed a strong positive correlation (Spearman rho=0.88) 

with the relative PAC 3-7 ring content of each substance. Figure 8B shows examples of the same relationships when UVCBs were 

grouped using their manufacturing stream-based categories. For those categories with relatively higher 3-7 ring PAC content, or 

spanning a wide range of PAC content, strong trends in the categories are observed showing increased bioactivity correlated to  
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Fig. 6: ToxPi plots show striking similarity of bioactivity 
patterns among Heavy Fuel Oil components, and among 
some waxes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increased 3-7 ring PAC content. In contrast, for categories with low to negligible 3-7 ring PAC content these trends were not 

observed. We also examined the relationship between PAC content across aromatic ring compounds and bioactivity (Tab. 3). We 

found that 3-7 ring PAC content had the strongest correlation, followed by PAC 3-ring content and PAC 4-ring content. These 

results corroborate the known relationship between the content of polycyclic aromatic compounds, especially of 3-7 ring type, in 

the petroleum refining products with their potential health hazard (McKee et al., 2015; Gray et al., 2013). Interestingly, when the 

ToxPi scores for each cell type were correlated with PAC (3-7 ring) content of each substance, we found that data from iPSC-

derived cell types and HUVECs were as informative as all data combined (Tab. 4 and Fig. S51). 
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Tab. 3: Spearman (rank) correlations of PAC content summarized across sets of ring classes suggests that the summary of 
PAC 3-7 rings is most predictive of overall bioactivity  
The greatest individual contributions arise from 3 ring and 4 ring content. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Tab. 4: Cell-specific relationships between the bioactivity and polycyclic aromatic compound (PAC, 3-7 ring) content of 
petroleum UVCBs tested in this study  
See Figure S51 for cell type-specific correlation plots. 

Cell type name Spearman correlation () with 
PAC (3-7 ring) 

A375 0.12 

A549 n/a* 

HEPARG 0.18 

HEPG2 0.25 

HLMVEC 0.52 

HT29 n/a 

LN229 0.10 

MCF7 0.52 

SH-SY5Y -0.09 

CM 0.83 

HEP 0.81 

ENDO 0.82 

HUVEC 0.76 

NEUR 0.74 

MACRO n/a 

All QC “pass” phenotypes 0.89 

*, No QC “pass” phenotypes were available from this cell type. See Table 2 for explanation. 

 
 
4 Discussion 
 
Regulators are tasked with assessing the risk to human and environmental health from substance exposure, including complex 

substances, while reducing the use of animal testing. In order to facilitate these objectives, we aimed to determine whether NAMs 

that are based on in vitro bioactivity can be used to ascertain substance similarity among complex petroleum-substances. These 

substances are manufactured in high volumes and have wide spread uses and as such are subject to stringent regulatory scrutiny 

(McKee et al., 2015, 2018). A large number of mammalian toxicology studies have been generated on these substances based on 

the requirements of previous regulatory frameworks, such as the Dangerous Substances Directive in the EU, and the High 

Production Volume Program in the USA. In general, lower boiling petroleum streams that do not contain PAC are known to exhibit 

lower tier toxicological effects such as mild skin irritation, and in some cases central nervous system effects at higher dose levels.  

PAC Content Correlation with ToxPi Bioactivity 

Rings 3-7 0.89 

Rings 4-7 0.70 

Rings 5-7 0.51 

Rings 1-2 0.36 

3 Ring 0.84 

4 Ring 0.73 

5 Ring 0.55 

6 Ring 0.43 

7 Ring 0.29 
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Fig. 7: Manufacturing stream-based grouping of the 
bioactivity for individual petroleum substances  
Using the ToxPi score as an overall measure of bioactivity for 
each UVCB, striking differences are observed across UVCB 
categories (top). This phenomenon differs by cell type, with iCell 
hepatocytes showing two clear groups of bioactivity (middle), 
and iCell cardiomyocytes showing a gradation across the 
categories (bottom). Each dot represents a UVCB sample total 
ToxPi score derived from all phenotypes (top) or cell-specific 
phenotypes. Box is the inter-quartile range, vertical line is the 
median, and whiskers are min-max range of values. See Figure 
S41 for the same data for other cell types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, heavier and high boiling petroleum substances, starting from some of the gas oils, have increased amounts of PAC 

constituents commensurate with potential to cause systemic toxicity as well as carcinogenicity and reproductive toxicity (Roth et 

al., 2013; Feder and Hertzberg, 2013; McKee and White, 2014; McKee et al., 2014). These data have been used to fulfil 

requirements in the REACH dossiers, and the knowledge of the composition and refining processes, coupled with the existing 

health hazard data, formed the basis for developing the grouping, read across and testing hypothesis.  

Although registrations for the petroleum substances were submitted for the 2010 REACH high tonnage deadline, multiple data gaps 

were identified. Where read across could not be applied, testing proposals to fill these data gaps were included in the respective 

REACH dossiers. An alternative to new testing is the use of read-across which requires detailed analytical data, ideally describing 

the full substance or all of its constituents (CONCAWE, 2019). However, the European Chemicals Agency (ECHA) is concerned 

about the paucity of information on chemical composition available and as a result has challenged the read-across assumptions in 

petroleum substance submissions. This has led to requests for additional analytical chemistry and toxicology data to better 

characterize similarity, justify the read-across, and address data gaps, a representative decision can be found in (ECHA, 2020). One 

approach to establish substance similarity is to consider chemical composition and/or physico-chemical properties. The 
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Fig. 8: Polycyclic aromatic compound (PAC) score for 3-7 ring compounds in each UVCB sample is highly correlated with 
the overall ToxPi bioactivity score 
(A) For all UVCB categories, PAC 3-7 ring content explains ~80% of the variation in ToxPi bioactivity. (B) The relationships depicted 
for each grouped category. See Figure S51 for cell type-specific correlations. 

 

process of grouping petroleum substances for regulatory decision-making and read-across traditionally relies on the 

physical/chemical properties, manufacturing process, and similar end uses (McKee et al., 2015). However, given the inherent 

chemical complexity of petroleum substances, as well as a lack of regulatory guidance as to what data may conclusively 

demonstrate substance similarity, defining chemical groupings and applying the read across remains challenging.  

This project hypothesised that NAM-based biological activity fingerprints, in conjunction with the existing grouping 

strategy (i.e., manufacturing process, physico-chemical characteristics, and performance specifications), would strengthen the 

justification for substance similarity (or disparity). Specifically, we argue that availability of the orthogonal data (i.e., physical, 

chemical, and biological) on the same substance(s) should enhance confidence in the application of read-across for petroleum 

substances. Indeed, integration of chemical structure, physico-chemical properties, and biological data (in vivo, in vitro and in 

silico) has been shown to offer a number of advantages (Low et al., 2011, 2013; Rusyn and Greene, 2018; Zhu et al., 2016) and was 

encouraged by the US National Academies (National Research Council, 2014; National Academies of Sciences Engineering and 

Medicine, 2017). We suggest that expanding the regulatory principle of “read-across” hypotheses to include in vitro bioactivity 

data could address uncertainties and increase confidence and the transparency of decisions. Still, it should be noted that NAM-

based data are intended for support grouping of petroleum substances, and not to be used for hazard evaluation. To subsequently 

support hazard evaluations and read-across, testing and read-across hypotheses may be developed using newly collected in vitro 

and existing in vivo data connected to the petroleum substance based on the chemical composition. This will facilitate selection of 

representative substances for further in vivo testing, if needed, and the read-across from these substances.  

Previous studies (Grimm et al., 2016; Chen et al., 2020) have shown that incorporation of the bioactivity data helps 

underpin substance grouping, and to prioritise substances for which further work is needed to inform regulatory assessments. The 

present work provides further evidence that bioactivity profiling of complex UVCBs is a feasible path towards characterization of 

“sufficient similarity” for complex substances. It is the largest “case study” to date aimed at testing whether and how in vitro 

bioactivity data can be used to inform grouping of UVCBs. By including the large number of substances, cell types, and endpoints, 

we show that the approach is broadly applicable, not only with respect to grouping of petroleum substances, but also other UVCBs 

and mixtures. Indeed, our study demonstrates clear (clustering) relationships between in vitro bioactivity profiles and the class 

assignment of DMSO extracts of petroleum substances.  

It is acknowledged that using a DMSO extract of the substance means these biological activity data are not representative 

of the full substance. Even though DMSO selectively extracts lipophilic constituents including PACs from test substances, the 

chemical profiles of PACs across molecular classes remain consistent after extraction (Luo et al., 2020). Modelling results from in 

vivo testing of a range of petroleum substances indicated that the higher tier toxicological profile of high-boiling petroleum 

substances is related to the types and levels of PAC (Nicolich et al., 2013). Thus, the DMSO extracts represent the ‘biologically 

active’ fraction, i.e., [3-7 ring] aromatics, of the refinery streams (ASTM International, 2014; Roy et al., 1988), although additional 

constituents (i.e., all polar molecules) are also extracted which explains that certain refining streams with low to no (3-7 ring) PAC 

content still have low levels of extractable materials. Furthermore, the extracts obtained using this method are used routinely for 

safety (e.g., mutagenicity) testing and chemical characterization of the refinery streams (CONCAWE, 1994; Carrillo et al., 2019).  

Because this project was not aimed for hazard identification of petroleum substances, the use of a normalized control 

allowed direct comparison of the results both within and across substance categories. ToxPi scores were based on a relative 

comparison of the cumulative effects of the analysed substances. ToxPi scores are informative only in the context of a particular 

dataset. ToxPi profiles of the individual substances aid in visualizing the patterns in the effects of each substance on in vitro cell-

based models. Indeed, we observed overall strong correlation between bioactivity and the categories of UVCBs. For example, 
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HFOs, which have overall much higher PAC content than waxes, in general showed high bioactivity whereas waxes showed low 

bioactivity.  

We also tested whether multi-dimensional in vitro bioactivity and analytical data on petroleum substances can be used to 

classify them into categories. We found that each of these data streams individually is statistically significant in its ability to predict 

the category the substance may belong to, even though some mis-classifications can occur due to the complex nature of these 

substances. Importantly, combinations of these data, a so-called chemical-biological read-across, appeared most powerful in 

eliminating mis-classifications. These data offer strong support for the utility of orthogonal supporting biological and physico-

chemical data streams to increase confidence in grouping of complex UVCBs.  

It is well established that even within manufacturing categories of petroleum substances (e.g. HFO), the 3-7 ring PAC 

content can be variable between its category members. Existing groupings of petroleum-substances contain category members with 

considerable inter- and intra-category overlap as expected based on their phys-chem characteristics and manufacturing processes 

(CONCAWE, 2017). Petroleum substances are a continuum in terms of their chemical composition with “adjacent” streams 

overlapping, to some extent, there will be overlap between the heavy end of a low boiling stream and the light end of the adjecent 

higher boiling stream. It is therefore significant that the bioactivity data collected in this study were able to clearly identify 

substances that should not be placed into the same category based on their refining properties and/or product specifications. 

Specifically, we found considerable variation in bioactivity within some categories, for example HFO have a large range from low 

to high PAC containing substances which is reflected in the spread of bioactivity observed in this category. This trend was enforced 

by the fact that the biological data separate out the two foots oils from the HFOs. This is well explainable as foots oils are much 

closer to waxes from a refining perspective.  

It is also noteworthy that both overall, and even within groupings, the 3-7 ring PAC content of tested substances 

correlated strongly with bioactivity. This finding suggests that petroleum substances can be ranked in the chemical-biological space 

representing the continuum of petroleum substances. On the one hand, this finding is in agreement with the “PAC hypothesis” for 

petroleum substances which states that certain specific toxicological effects observed in heavier (average molecular weight) 

substances are associated with the level of 3-7 ring PAC in these substances (Murray et al., 2013; Goyak et al., 2016; Kamelia et 

al., 2019). On the other hand, our finding of strong correlation was independently derived using in vitro data from many cell types. 

Interestingly, unlike in cell types that retain basic physiological functions, such iPSC-derived cells, no significant correlation was 

observed in cancer-derived cell lines. It can be speculated that genomic alterations in cancer cell lines may result in a wide range of 

impacts on physiologic function that may interfere with chemcial stimulus-specific responses. 

This study adds valuable information to the overall weight of evidence for selecting complex petroleum substances for 

grouping and then identifying the “representative” substance(s) for additional testing. Trends in the total ToxPi scores and their 

correlation with PAC 3-7 ring content are helpful for selection of the most representative substances from each petroleum 

substances category for further testing. This is needed for an overall integrative testing strategy that limits the need for testing in 

animals for toxicological assessments of petroleum substances. For example, a substance which is believed to have the highest 

potential to show a positive finding in an in vivo study based on its biological activity data linked to its chemical composition, can 

be selected for a specific endpoint, and the data generated on this sample can then be conservatively applied to the entire category. 

Still, to cover the full chemical composition of petroleum substances, additional data may be needed for other molecular classes of 

constituents.  

The read across approach that is applied here is slightly different from “classical”  read across approaches that are not 

applicable to UVCB substances, and might be more similar to the “bridging principle” as referred to in the classification and 

labelling regulation (United Nations Economic Commission for Europe, 2020). Because the physical chemistry of petroleum 

refining leads to a continuum of substances, there will be significant overlap between different substance categories: the heavy end 

of a lower boiling refining stream will overlap with the light end of the neighboring higher boiling refining stream. These are 

concepts which are of critical importance for chemical-biological grouping and read across of petroleum substances. These insights 

will help facilitate an adapted read across framework specific to UVCBs by applying the bridging principle. 

Another important outcome of this study was a determination of what kind of in vitro models are most informative in 

terms of decision-making for complex petroleum substances. In this study, we found that data derived from assays of biological 

activity in iPS cell-derived models were highly informative. This finding may be the product of the retained organotypicity of these 

cell types as compared to established cancer cell lines. Specifically, data from iPSC-derived hepatocytes was most informative for 

separating the substances in terms of their overall bioactivity trends which is consistent with the ability of these cells to metabolise 

PAC-containing substances to reactive intermediates. Also, assays based on iPSC-derived cardiomyocytes provided separation 

between the UVCB categories with substances that have low to negligible PAC content, which suggests that cardiomyocytes can be 

a highly informative in vitro model (Chen et al., 2020) for substance withouth a defined toxicity pathway. These data also suggest 

there are different types of molecules other than PAC playing a role in the observed biological responses. More research is needed 

on whether generating and adding data to integrative analysis on the biological activity of the non-PAC fraction of petroleum 

substances can further improve overall grouping. Therefore, inclusion of additional cell types may be beneficial to address a 

broader range of potential health effects. Finally, studies on the experimental approaches that may aid in integration of biokinetic 

information in the grouping of complex substances are needed. For example, a previous study of bioavailability of the hydrocarbon 

fractions showed that extraction procedure, protein binding in cell culture media, and dilution factors prior to in vitro testing can all 

contribute to determining the bioavailable concentrations of bioactive constituents of petroleum substances (Luo et al., 2020).  

In summary, we show that the use of biological activity parameters across multiple cell types of different origins, 

combined with extant phys-chem properties, improves the ability to group and rank order petroleum substances for subsequent 
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regulatory evaluation and data gap analysis. The data presented herein support the use of the current categories of petroleum 

substances which are based on refining history, but add additional critical biological insights to these grouping in terms of 

chemical-biological activity which are important for generating read across hypotheses.  
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