46 research outputs found

    Cellular-level versus receptor-level response threshold hierarchies in T-Cell activation

    Get PDF
    Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles

    Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity

    Get PDF
    Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation

    CD8+ T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold

    Get PDF
    The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity

    CD8+ T-­cell specificity is compromised at a defined major histocompatibility complex class I/CD8 affinity threshold

    Get PDF
    The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity

    CD8+ T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold

    Get PDF
    The CD8 coreceptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR) binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~ 1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~ 10-fold). In this study, we used a panel of MHCI mutants with altered CD8 binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity. The pMHCI/CD8 interaction controls specificit

    Neuroimaging and Clinical Findings in Healthy Middle-Aged Adults With Mild Traumatic Brain Injury in the PREVENT Dementia Study

    Get PDF
    IMPORTANCE: Traumatic brain injuries (TBI) represent an important, potentially modifiable risk factor for dementia. Despite frequently observed vascular imaging changes in individuals with TBI, the relationships between TBI-associated changes in brain imaging and clinical outcomes have largely been overlooked in community cases of TBI.OBJECTIVE: To assess whether TBI are associated with and interact with midlife changes in neuroimaging and clinical features in otherwise healthy individuals.DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional analysis used baseline data from the PREVENT Dementia program collected across 5 sites in the UK and Ireland between 2014 and 2020. Eligible participants were cognitively healthy midlife adults aged between 40 and 59 years. Data were analyzed between January 2023 and April 2024.EXPOSURE: Lifetime TBI history was assessed using the Brain Injury Screening Questionnaire.MAIN OUTCOMES AND MEASURES: Cerebral microbleeds and other markers of cerebral small vessel disease (white matter hyperintensities [WMH], lacunes, perivascular spaces) were assessed on 3T magnetic resonance imaging. Clinical measures were cognition, sleep, depression, gait, and cardiovascular disease (CVD) risk, assessed using Computerized Assessment of Information Processing (COGNITO), Pittsburgh Sleep Quality Index, Center for Epidemiologic Studies Depression Scale, clinical interviews, and the Framingham Risk Score, respectively.RESULTS: Of 617 participants (median [IQR] age, 52 [47-56] years; 380 female [61.6%]), 223 (36.1%) had a history of TBI. TBI was associated with higher microbleed count (β = 0.10; 95% CI, 0.01-0.18; P = .03), with a dose-response association observed with increasing number of TBI events (β = 0.05; 95% CI, 0.01-0.09; P = .03). Conversely, TBI was not associated with other measures of small vessel disease, including WMH. Furthermore, TBI moderated microbleed associations with vascular risk factors and clinical outcomes, such that associations were present only in the absence of TBI. Importantly, observations held when analyses were restricted to individuals reporting only mild TBI.CONCLUSIONS AND RELEVANCE: In this cross-sectional study of healthy middle-aged adults, detectable changes in brain imaging and clinical features were associated with remote, even mild, TBI in the general population. The potential contribution of vascular injury to TBI-related neurodegeneration presents promising avenues to identify potential targets, with findings highlighting the need to reduce TBI through early intervention and prevention in both clinical care and policymaking.</p

    Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity

    Get PDF
    Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01–restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The molecular and cellular function of gene-modified T-cells

    No full text
    Chimeric Immune Receptors (CIR) consisting of a carcinoembryonic antigen (CEA)specific single chain antibody fragment (scFv), fused to the CD3s signalling chain from the T-cell receptor (TCR), induce T-cell activation on CEA ligation. The study sought to investigate some of the structural aspects of CIRs with the objective of potentially optimising CIR function. Analysis of several model systems identified Jurkat T-cells as a useful model for assessing CIR-mediated responses to antigen. CIR-expressing Jurkat T-cells demonstrated a dose-dependent increase in CD69 expression in response to CEA. Jurkat T-cells expressing a CIR with the wild-type CD3s transmembrane domain exhibited a significantly higher surface expression of the TCR associated CD3e than cells expressing receptors with any other transmembrane domain. This upregulation of TCR-associated but not TCR-non associated receptors was abrogated by a transmembrane C2G mutation, which effectively prevented dimerisation, or by replacing the transmembrane domain with a heterologous non-dimerising domain. The concentration of CEA required for 50% maximal CD69 expression (ECso) was also significantly increased by both of these modifications. Moving the disulphide bridge to the extracellular domain, but not any other position in the transmembrane domain, permitted redimerisation and partially restored optimal receptor function. This difference in function may be attributed to TCR interactions as wild-type dimeric but not monomeric receptors, as well as inducing an upregulation in TCR complexes in Jurkat T-cells, could also reconstitute TCR expression in CD3s deficient MA5.8 cells. Potential TCR-CIR interactions were further investigated by mutational analysis to the charged transmembrane D6 residue responsible for wild-type CD3s-TCR interactions. Conservative D6N/E/Q mutations permitted dimerisation but significantly impacted on receptor efficiency; however, non-conservative D6K mutations affected receptor dimerisation and had a more severe impact on receptor function. This knowledge obtained from this study was applied to clone a novel CD28-fusion receptor containing the CD3s transmembrane domain with analysis in Jurkat T-cells demonstrating this CIR had a significantly lower ECso than existing CD28-fusion receptors containing the CD28 transmembrane domain. The second aim of this study was to investigate the role of CD2 as a novel costimulatory module. scFv.CD2.CD3s and scFv.CD28.CD2.CD3s activated Jurkat T-cells more efficiently than scFv.CD28.CD3s. However, in primary human T-cells only scFv.CD2.CD3s expressed at levels to observe functional responses. In these cells CD2 costimulation induced higher IFNy secretion than CD28 costimulation. In summary the report highlights the importance of the CD3s transmembrane domain in optimal CIR function and demonstrates the potential for CD2-based CIRs for future clinical trials.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore