
 

 
 

 
 

  warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Dockree, Tamsin, Holland, Christopher J., Clement, Mathew, Ladell, Kristin, McLaren, James 
E., van den Berg, Hugo , Gostick, Emma, Llewellyn-Lacey, Sian, Man, Stephen, Bailey, Mick, 
Burrows, Scott R., Price, D. A. and Wooldridge, Linda. (2016) CD8+ T-­cell specificity is 
compromised at a defined major histocompatibility complex class I/CD8 affinity threshold. 
Immunology and Cell Biology, 95. pp. 68-76. 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/81587         
       
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 4.0 International 
license (CC BY 4.0) and may be reused according to the conditions of the license.  For more 
details see: http://creativecommons.org/licenses/by/4.0/   
 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/46521977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/81587
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk


OPEN

ORIGINAL ARTICLE

CD8+ T-cell specificity is compromised at a defined
MHCI/CD8 affinity threshold

Tamsin Dockree1, Christopher J Holland2, Mathew Clement1, Kristin Ladell1, James E McLaren1,
Hugo A van den Berg3, Emma Gostick1, Kelly L Miners1, Sian Llewellyn-Lacey1, John S Bridgeman1,
Stephen Man4, Mick Bailey2, Scott R Burrows5, David A Price1,6 and Linda Wooldridge2

The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site

distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote

effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately

amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost

altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants

with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity

threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic

efficacy of adoptive T-cell transfer irrespective of antigen specificity.

Immunology and Cell Biology (2017) 95, 68–76; doi:10.1038/icb.2016.85

CD8+ T cells recognize antigens in the form of short peptide
fragments bound to major histocompatibility complex class I (MHCI)
molecules on the target cell surface.1 Specific engagement of peptide-
MHCI (pMHCI) complexes via the clonotypically expressed αβ T-cell
receptor (TCR) triggers a range of effector functions that play a
critical role in protective immunity against intracellular infections and
various malignancies. The ability to identify and eliminate cancerous
cells in vivo is particularly intriguing2,3 and promises novel therapies
based on the immunobiology of CD8+ T cells. Indeed, adoptive
transfer of in vitro-expanded CD8+ T cells can cause tumour
regression in the clinical setting.4,5 These seminal observations have
sparked great interest in the use of cellular therapy to combat
cancer.6,7 However, a number of obstacles preclude the widespread
use of this approach. In biological terms, one key limitation relates to
the naturally low affinity of self-derived antigen-specific TCRs,8,9

which constrains the functional properties of tumour-associated
antigen-specific CD8+ T-cell populations. This intrinsic problem stems
from the negative selection of high-affinity autoreactive αβ TCR
clonotypes during thymic education and most likely explains why it
has proven difficult to develop cancer vaccines in the absence of a
clear oncogenic microbial agent. Although high-affinity TCRs can be
engineered to circumvent suboptimal antigen recognition, most
notably via phage display technology,10,11 the requirement to reiterate
this process for each pMHCI specificity tailored to individual tumour
proteomes is a major barrier to therapeutic applicability.

The surface-expressed CD8αβ glycoprotein (CD8 from here on)
serves as a co-receptor for MHCI-restricted T cells.12 CD8 binds to a
largely invariant region of MHCI at a site distinct from the
TCR-binding platform and acts to enhance T-cell antigen sensitivity
by up to six orders of magnitude.12–14 This effect is mediated via
several mechanisms, including: (i) promotion and stabilization of the
TCR/pMHCI interaction at the cell surface;15–18 (ii) recruitment of
signalling molecules to the intracellular side of the TCR/CD3ζ
complex;19–22 and (iii) localization of TCR/pMHCI complexes within
specialized membrane microdomains enriched for early intracellular
signal transduction molecules.23,24 These properties can potentially be
harnessed to modulate antigen-specific CD8+ T-cell immunity. It is
notable in this regard that pMHCI/CD8 binding is characterized by
very low solution affinities (average KD~145 μM).25 Moreover, an
incremental increase in the strength of this interaction (KD~98 μM)
can boost antigen sensitivity by up to 100-fold.17,26 Such manipula-
tions are globally applicable across TCR specificities due to the non-
polymorphic nature of CD8, thereby providing a generic opportunity
to enhance CD8+ T-cell reactivity for therapeutic purposes.27 How-
ever, substantial increases in pMHCI/CD8 affinity can abrogate
antigen specificity.28

In this study, we used a panel of MHCI mutants with altered
CD8-binding properties to show that the specificity of peptide-
dependent TCR recognition is maintained within a defined pMHCI/
CD8 affinity window. Collectively, the data provide biophysical
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guidelines for the rational design of high-affinity CD8 molecules to
optimize the therapeutic efficacy of adoptive T-cell transfer.

RESULTS

Development of a novel MHCI mutant to probe the pMHCI/CD8
interaction
The pMHCI/CD8 interaction is characterized by very low
solution binding affinities and extremely rapid kinetics.29–31 Although
some variation exists between different MHCI molecules due to
polymorphisms that affect the CD8 binding site, the average
pMHCI/CD8 interaction occurs with an equilibrium dissociation
constant (KD) ~ 145 μM (range= 100–220 μM).25,32 Substantially
weaker pMHCI/CD8 solution binding affinities have been reported
for human leukocyte antigen (HLA) A*6801, HLA B*4801 and HLA
B*8101.22,25 The introduction of a glutamine (Q) to glutamic acid (E)
substitution at position 115 of the MHCI α2 domain increases the
pMHCI/CD8 interaction by ~ 1.5-fold (KD~98 μM) without impact-
ing the TCR/pMHCI binding platform.26 This mutation significantly
enhances the sensitivity of pMHCI antigen recognition (up to
100-fold) without compromising TCR-mediated specificity. In
contrast, a human to murine MHCI α3 domain switch increases the
pMHCI/CD8 interaction by ~ 15-fold (KD~11 μM) and bypasses
the requirement for cognate TCR engagement.28

To determine the pMHCI/CD8 affinity at which antigen specificity
is lost, we introduced an alanine (A) to valine (V) substitution at
position 245 of A2/Kb (a fusion molecule comprising the α1/α2

peptide-binding platform of HLA A*0201 and the α3 domain of
H2-Kb) to generate the novel MHCI mutant A2/Kb A245V. Surface
plasmon resonance analysis revealed that A2/Kb A245V binds CD8
with a KD of 27 μM (Figures 1a and b), while the TCR/pMHCI
interaction remains unchanged (Figures 1c and d). Combined with
previously developed mutants, we then had an extended panel for
functional analysis that incorporated MHCI molecules spanning a
range of CD8 interaction affinities as follows: abrogated (A2 D227K/
T228A);21 weak (A2 A245V);22 wild type (A2); slightly enhanced
(A2 Q115E);26 enhanced (A2/Kb A245V); and superenhanced (A2/
Kb).28 Importantly, none of these mutations affect the integrity of TCR
binding to pMHCI (Table 1; Figure 2a).

Figure 1 A2/Kb A245V exhibits enhanced affinity for CD8 without impacting the TCR/pMHCI interaction. Biotinylated A2 (a, c) or A2/Kb A245V (b, d)
monomers refolded with wild type β2m and the heteroclitic peptide ELAGIGILTV were immobilized on a streptavidin-coated BIAcore chip. Serial dilutions of
soluble human CD8αα (a, b) or MEL5 TCR (c, d) were flowed over the chip to measure equilibrium binding by surface plasmon resonance. Data were
analyzed using BIAevaluation 3.1, Microsoft Excel and Origin 6.1.

Table 1 CD8-binding affinity measurements for the MHCI molecules

used in this study

Location of mutation Description of mutation pMHCI/CD8 KD (μM)

MHCI α3 domain A2 D227K/T228A 410 000 (NDB)a

MHCI α3 domain A2 A245V 498a

Wild type No mutation 137±9.7a

MHCI α2 domain A2 Q115E 98±14.5a

MHCI α3 domain A2/Kb A245V 27±1

MHCI α3 domain A2/Kb 11a

Abbreviations: MHC1, major histocompatibility complex class I; NDB, no detectable binding;
pMHC1, peptide-MHC1.
aMeasurements reported previously for MHCI molecules refolded with wild type human β2m and
the nonamer peptide LLFGYPVYV, an immunodominant epitope derived from the human T-cell
lymphotropic virus type 1 Tax protein (residues 11–19).17
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Increasing the strength of the pMHCI/CD8 interaction enhances
pMHCI engagement at the cell surface
To investigate the relationship between pMHCI/CD8 affinity and
pMHCI engagement at the cell surface, we generated fluorescent
tetrameric complexes of A2 D227K/T228A, A2 A245V, A2, A2 Q115E,
A2/Kb A245V and A2/Kb refolded with wild type β2 microglobulin
(β2m) and the decamer peptide ELAGIGILTV, which is a
heteroclitic variant of the Melan-A26-35 epitope EAAGIGILTV. These
pMHCI tetramers were used at standardized concentrations to stain
two different ELAGIGILTV-specific CD8+ T-cell clones (MEL2 and
MEL187.c5). Tetramer staining of MEL2 and MEL187.c5 was very

poor in the absence of an interaction with CD8 (A2 D227K/T228A)
(Figure 2b). As the strength of the pMHCI/CD8 interaction increased,
however, progressive increments in pMHCI tetramer staining were
observed for both CD8+ T-cell clones. Thus, pMHCI engagement at
the cell surface is enhanced in the presence of stronger pMHCI/CD8
interactions.

pMHCI binding specificity is compromised at a defined pMHCI/
CD8 affinity threshold
Standard wild type pMHCI tetramers bind cell surface TCRs with
exquisite specificity.33,34 In contrast, nonspecific binding occurs in the

A2 D227K/T228A
Null pMHCI/CD8
TCR/pMHCI unchanged
No binding

A2 A245V
Weak pMHCI/CD8
TCR/pMHCI unchanged
KD = 498 µM 

A2 wild type
Normal pMHCI/CD8
TCR/pMHCI unchanged
KD = 137 µM

A2 Q115E
Slightly enhanced 
pMHCI/CD8 
TCR/pMHCI unchanged
KD = 98 µM 

A2/Kb A245V 
Enhanced pMHCI/CD8
TCR/pMHCI unchanged
KD = 27 µM 

A2/Kb

Superenhanced 
pMHCI/CD8
TCR/pMHCI unchanged
KD = 11 µM 

MEL2

A2/Kb

A2/Kb A245V 

A2 Q115E
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Figure 2 Increasing the strength of the pMHCI/CD8 interaction enhances pMHCI binding at the cell surface. (a) Schematic representation of the six different
MHCI mutants spanning a range of pMHCI/CD8 interaction affinities. None of the introduced mutations affect TCR/pMHCI binding. (b) 5×104 clonal MEL2
or MEL187.c5 CD8+ T cells were stained with ViViD and the indicated ELAGIGILTV tetramer (A2 D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb A245V
or A2/Kb) at 25 μg ml−1. Viable events are shown in concatenated histogram plots. Data were acquired using a FACSCantoII flow cytometer and analyzed
with FlowJo software version 10.6.
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presence of a superenhanced pMHCI/CD8 interaction (KD~11 μM).28
To define the pMHCI/CD8 affinity threshold at which pMHCI
binding specificity is compromised, we stained healthy donor periph-
eral blood mononuclear cells (PBMCs) with fluorescent tetrameric
complexes of A2 D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb

A245V and A2/Kb refolded with wild type β2m and ELAGIGILTV.
First, we stained A2– PBMCs. In the absence of alloreactivity, we

would not expect these samples to harbour TCRs that recognize
peptides in the context of A2. Any observable tetramer staining
under these circumstances can therefore be attributed to peptide-
independent recognition of pMHCI. No background staining was

detected when A2– PBMCs were stained with the A2 D227K/T228A,
A2 A245V, A2 or A2 Q115E tetramers up to a concentration of
50 μg ml− 1 (Figure 3). A similar pattern was observed with the A2/Kb

A245V tetramer at 0.5 and 5 μg ml− 1. In line with a concentration-
dependent effect, however, the same reagent displayed moderate
background staining at 50 μg ml− 1. The A2/Kb tetramer was almost
entirely nonspecific, as described in a previous report.28

Next, we repeated this analysis using A2+ PBMCs, which frequently
harbour TCRs specific for ELAGIGILTV. The clonotypic repertoire in
these samples is also shaped by positive selection to ensure an intrinsic
level of reactivity with A2. Staining specificity was maintained with the

Figure 3 pMHCI binding specificity is compromised at a defined pMHCI/CD8 affinity threshold in A2– donors. 1×106 A2– PBMCs were stained with ViViD
and the indicated ELAGIGILTV tetramer (A2 D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb A245V or A2/Kb) at 0.5, 5 or 50 μg ml−1, followed by a
panel of lineage-specific monoclonal antibodies as described in the Methods section. Plots are gated on live, CD3+ populations. Data were acquired using a
FACSCantoII flow cytometer and analyzed with FlowJo software version 10.6. Values shown in the upper right quadrant indicate % tetramer+ CD8+ T cells.
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A2 D227K/T228A, A2 A245V, A2 and A2 Q115E tetramers up to a
concentration of 50 μg ml− 1 (Figure 4). Similarly, no background
staining was detected with the A2/Kb A245V tetramer at 0.5
and 5 μg ml− 1. Reactivity was apparent with the same reagent at
50mg ml�1, however, exceeding the levels observed in comparable
experiments with A2� PBMCs. The A2/Kb tetramer was again largely
nonspecific, although this effect was not obvious at 0.5 μg ml− 1.
To consolidate these findings, we performed analogous experiments

across a broader range of tetramer concentrations using PBMCs from
a different A2+ donor (Figure 5a). Again, no loss of specificity was
detected with the A2 D227K/T228A, A2 A245V, A2 or A2 Q115E

tetramers up to a concentration of 25 μg ml− 1. The A2/Kb A245V
tetramer was also highly specific at p5 μgml�1, but modest
reactivity was observed with the same reagent at4 5μgml�1.
Considerable background staining was apparent with the A2/Kb

tetramer. To clarify these data, we plotted nonspecific staining as a
function of tetramer concentration versus pMHCI/CD8 affinity
(Figure 5b) and used non-parametric tests to examine the impact of
these variables on tetramer binding at the cell surface (Figure 6). Our
analyses revealed that loss of tetramer specificity does not occur
gradually with incremental increases in the strength of the pMHCI/
CD8 interaction. Instead, the specificity of pMHCI engagement is

Figure 4 pMHCI binding specificity is compromised at a defined pMHCI/CD8 affinity threshold in A2+ donors. 1 ×106 A2+ PBMCs were stained and analyzed
as described in the legend for Figure 3. Values shown in the upper right quadrant indicate % tetramer+ CD8+ T cells.
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compromised beyond a certain pMHCI/CD8 affinity threshold,
epitomized by the A2/Kb A245V (KD~27 μM) and A2/Kb (KD~11 μM)
tetramers.

T-cell activation specificity is compromised at a defined pMHCI/
CD8 affinity threshold
CD8+ T-cell activation is exquisitely sensitive, requiring o10 pMHCI
molecules for full calcium release and mature synapse formation.35 As
a consequence, effector functions can be elicited at cognate pMHCI
concentrations well below those necessary for detectable tetramer
binding.36 To determine the pMHCI/CD8 affinity at which activation
specificity is lost, we used a panel of Hmy.2 C1R (C1R) B cells
transduced to express A2 D227K/T228A, A2 A245V, A2, A2 Q115E,
A2/Kb A245V or A2/Kb at equivalent surface densities. Nonspecific
activation as a function of pMHCI/CD8 affinity was initially tested
using the LC13 and SB10 CD8+ T-cell clones, which are
neither restricted by nor alloreactive against A2.37,38 After overnight
stimulation, nonspecific macrophage inflammatory protein-1b release
was only observed in the presence of A2/Kb C1R B cells (Figure 7a).
Similar results were obtained with the A2-restricted CD8+ T-cell clone
MEL187.c5 (Figure 7b).
To confirm these findings with a different effector read-out, we

used the same panel of C1R B cells in standard chromium
release assays with the MEL187.c5 CD8+ T-cell clone to measure
peptide-independent cytotoxicity (Figure 7c). The A2 D227K/T228A,
A2 A245V, A2 and A2 Q115E C1R B-cell targets remained largely
intact throughout the experiment. Similarly, there was no detectable
short-term killing of A2/Kb A245V C1R B cells. Marginal nonspecific
lysis was apparent with the same targets after prolonged incubation,
however, consistent with a subtle time-dependent effect triggering the
release of cytolytic enzymes. The A2/Kb C1R B-cell targets were killed
in substantial numbers over time. Collectively, these data mirror the

corresponding tetramer staining patterns and indicate that CD8+

T-cell activation specificity is maintained below a defined pMHCI/
CD8 affinity threshold (KD~27 μM).

DISCUSSION

Despite an extremely weak interaction with MHCI (average
KD~145 μM), the CD8 co-receptor mediates profound biological
effects that enhance the sensitivity of TCR-driven activation in
response to cognate antigen.12,39 A small increment in pMHCI/CD8
affinity can further amplify the functional consequences of this
interaction, increasing antigen sensitivity in responding CD8+ T cells
by up to 100-fold.26 These observations suggest a possible translational
role for affinity-enhanced CD8 molecules.27 For example, the
introduction of such modified co-receptors together with tumour-
specific TCRs may facilitate the activation of engineered T cells in the
presence of naturally expressed cancer antigens, compensating both
for low-affinity TCR/pMHCI interactions and low-density cognate
pMHCI expression on the target cell surface. However, excessive
increases in the strength of the pMHCI/CD8 interaction (KD~11 μM)
lead to nonspecific T-cell activation.28 It is therefore important to
define the optimal affinity at which CD8 co-receptor engagement
enhances pMHCI recognition without compromising the specificity of
antigen-specific CD8+ T cells.
In this study, we used a panel of MHCI molecules spanning a range

of CD8-binding affinities to delineate the impact of variable pMHCI/
CD8 interactions on the specificity of TCR-mediated antigen
recognition. Surface plasmon resonance studies confirmed that none
of these mutations affect the TCR/pMHCI-binding platform.
Tetrameric pMHCI complex engagement at the cell surface was
enhanced in a stepwise manner with increasing pMHCI/CD8 affinities.
In contrast, the specificity of pMHCI binding and T-cell activation
was compromised at a defined pMHCI/CD8 affinity threshold
(KD~27 μM).
Biophysical studies have shown that the murine pMHCI/CD8

interaction (average KD~49 μM) is considerably stronger than the

Figure 5 Detailed analysis of pMHCI binding specificity across a range of
pMHCI/CD8 affinities in an A2+ donor. (a) 1×106 A2+ PBMCs were stained
and analyzed as described in the legend for Figure 3, with the exception
that each tetramer was used at 2, 3, 4, 5, 10, 15, 20 or 25 μg ml−1. (b)
The same data shown as % tetramer+ CD8+ T cells versus pMHCI/CD8
affinity.
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Figure 6 pMHCI binding specificity is a function of tetramer concentration
and pMHCI/CD8 affinity. The percentage of tetramer+ CD8+ T cells varies
with tetramer concentration (P=4.4×10–3; Friedman test). Modest to strong
evidence was found for individual MHCI mutants (A2 D227K/T228A:
P=1.6×10–2; A2 A245V: P=1.4×10–1; A2: P=1.4×10–1; A2 Q115E:
P=1×10–2; A2/Kb A245V: P=5.4×10–2; A2/Kb: P=8.8×10–4;
Jonckheere–Terpstra test for increasing dependence on tetramer
concentration). There was strong evidence for an effect of pMHCI/CD8
affinity on tetramer staining (P=3×10–7; Friedman test), although this was
not apparent when data for the two lowest KD values were excluded
(P=1.7×10–1; Friedman test). Tetramer staining was strongly dependent on
the KD of the pMHCI/CD8 interaction (Po10–7; Jonckheere–Terpstra test for
increasing dependence on KD). The virtual absence of staining at pMHCI/
CD8 affinities 427 μM suggests that a value within this order of magnitude
behaves as a threshold.

The pMHCI/CD8 interaction controls T-cell specificity
T Dockree et al

73

Immunology and Cell Biology



human pMHCI/CD8 interaction (average KD~145 μM).21,25 This
peculiar feature of mice may act to enhance T-cell cross-reactivity,
allowing a size-limited repertoire to provide effective coverage against
a common universe of pMHCI antigens.40 It is also notable that the
affinity of the murine pMHCI/CD8 interaction lies just below the
specificity threshold defined in this study (KD~27 μM). A conserved
optimum may therefore dictate the evolutionary limits of co-receptor
binding within a functional mammalian immune system.
The data presented here suggest the existence of an affinity window

that potentially enables optimization of the pMHCI/CD8 interaction
for therapeutic purposes without nonspecific T-cell activation.
However, it is important to note that CD8+ T cells are naturally
cross-reactive and that this phenomenon is controlled to some extent
by the CD8 co-receptor.41–43 It will therefore be important to examine
this effect in more detail to avoid potentially dangerous off-target
reactivity.44,45 Nonetheless, the maintenance of CD8+ T-cell specificity
below a supranormal pMHCI/CD8 affinity threshold offers an exciting
opportunity to enhance the therapeutic efficacy of adoptive cell
transfer irrespective of antigen specificity.

METHODS

Cells
The following CD8+ T-cell clones were used in this study: (i) MEL2 and
MEL187.c5, specific for the Melan-A-derived epitope ELAGIGILTV (residues
26–35) restricted by HLA A*0201 (A2); (ii) LC13, specific for the Epstein–Barr
virus EBNA3A-derived epitope FLRGRAYGL (residues 339–347) restricted by
HLA B*0801;37 and (iii) SB10, specific for the cytomegalovirus pp65-derived
epitope CPSQEPMSIYVY (residues 103–114) restricted by HLA B*3508.38

Clones were maintained in RPMI 1640 containing 100 U ml− 1 penicillin,
100 mg ml− 1 streptomycin, 2 mM L-glutamine and 10% heat-inactivated
fetal calf serum (R10; all components from Life Technologies, Carlsbad, CA,
USA), supplemented with 2.5% Cellkines (Helvetica Healthcare, Geneva,
Switzerland), 200 IU ml− 1 interleukin-2 and 25 ng ml− 1 interleukin-15
(both PeproTech, Rocky Hill, NJ, USA). Healthy donor PBMCs were isolated
by standard density gradient centrifugation using Ficoll-Hypaque (GE Health-
care, Chicago, IL, USA). C1R B cells expressing full-length A2 and variants
thereof were generated and maintained as described previously.26

pMHCI tetramer staining and flow cytometry
Soluble pMHCI tetramers were produced as described previously.17 For A2

typing, 1 × 106 PBMCs were stained with αA2-FITC (clone BB7.2; Serotec,

Oxford, UK) for 30 min at 4 °C. For pMHCI tetramer staining, 1 × 106 PBMCs

were resuspended in phosphate-buffered saline and stained with LIVE/DEAD

Fixable Violet (ViViD; Life Technologies) for 5 min at room temperature. After

washing in phosphate-buffered saline, cells were stained with tetramer-PE (A2

wild type and variants thereof) at the indicated concentrations for 20 min at

37 °C. The following mouse anti-human monoclonal antibodies were then

added for 20 min at 4 °C: αCD3-PerCP (clone SK7; BioLegend, San Diego, CA,

USA); αCD4-FITC (clone VIT4; Miltenyi Biotec, Bergisch Gladbach, Ger-

many); αCD8-APC (clone HIT8a; BD Pharmingen, San Diego, CA, USA);

αCD14-Pacific Blue (clone HCD14; BioLegend); and αCD19-Pacific Blue

(clone HIB19; BioLegend). Cells were washed twice in phosphate-buffered

saline after staining and 5×104 events per condition were acquired using a

FACSCantoII flow cytometer (BD Biosciences, San Jose, CA, USA). Data were

analyzed with FlowJo software version 10.6 (TreeStar Inc., Ashland, OR, USA).

Macrophage inflammatory protein-1b enzyme-linked
immunosorbent assay
Clonal CD8+ T-cells were incubated with C1R B cells expressing full-length A2

or variants thereof at different effector-to-target (E:T) ratios as indicated.

Supernatants were collected after 18 h and assayed for macrophage inflamma-

tory protein-1b by enzyme-linked immunosorbent assay according to the

manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA).

Chromium release assay
Target C1R B cells (1 × 106) were loaded with 51Cr (30 μCi) for 1 h and plated

in triplicate at 2× 103 cells per well in R10. Clonal CD8+ T cells were then

applied at an E:T ratio of 5:1 in a final volume of 150 μl. Target cells incubated
alone were used to calculate spontaneous release. Total release was measured

via the addition of Triton X-100 (Sigma-Aldrich, St Louis, MO, USA).

Supernatants were collected after 4, 6 or 18 h at 37 °C and mixed with

OptiPhase Supermix Scintillation Cocktail (150 μl per well; PerkinElmer Life

Sciences, Waltham, MA, USA). 51Cr content was measured using a MicroBeta

Counter (PerkinElmer Life Sciences). Specific lysis (%) was calculated accord-

ing to the following formula: (experimental release− spontaneous release/total

release− spontaneous release) × 100.

Figure 7 CD8+ T-cell activation specificity is compromised at a defined pMHCI/CD8 affinity threshold. (a) 3 ×104 clonal SB10 or LC13 CD8+ T cells were
incubated overnight with 6×104 C1R B cells expressing A2 D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb A245V or A2/Kb. Supernatants were collected
and assayed for macrophage inflammatory protein (MIP)-1b by enzyme-linked immunosorbent assay (ELISA). Data are shown corrected for background
production of MIP-1b. (b) 3 ×104 clonal MEL187.c5 CD8+ T cells were incubated overnight at the indicated E:T ratios with C1R B cells expressing A2
D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb A245V or A2/Kb. Supernatants were collected and assayed for macrophage inflammatory protein (MIP)-1b
by ELISA. Data are shown corrected for background production of MIP-1β. (c) 1×104 clonal MEL187.c5 CD8+ T cells were incubated with 2×103 C1R B
cells expressing A2 D227K/T228A, A2 A245V, A2, A2 Q115E, A2/Kb A245V or A2/Kb in standard chromium release assays as described in the Methods
section. Data are shown as % killing versus pMHCI/CD8 affinity. Error bars represent s.d.
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Surface plasmon resonance
Soluble TCRs and CD8αα were produced as described previously.22,46 Binding

analysis was performed using a BIAcore 3000 (GE Healthcare) equipped with a

CM5 sensor chip. Between 200 and 400 response units of biotinylated pMHCI

were immobilized to streptavidin, which was chemically linked to the chip

surface. The pMHCI was injected at a slow flow rate (10 μl min− 1) to ensure

uniform distribution on the chip surface. Combined with the small amount of

pMHCI bound to the chip surface, this reduced the likelihood of off-rate

limiting mass transfer effects. Soluble MEL5 TCR and CD8αα were purified

and concentrated to 100 and 150 μM, respectively, on the day of analysis to

reduce the likelihood of aggregation affecting the results. For equilibrium

analysis, eight serial dilutions of analyte were carefully prepared in triplicate for

each sample and injected over the relevant sensor chips at 25 °C. Soluble MEL5

TCR or CD8αα were injected over the chip surface at a flow rate of

30 μl min− 1. Results were analyzed using BIAevaluation 3.1 (GE Healthcare),

Microsoft Excel (Microsoft, Redmond, WA, USA) and Origin 6.1 (OriginLab,

Northampton, MA, USA). The equilibrium binding constant (KD) values were

calculated using a nonlinear curve fit (y= [P1x]/[P2+x]).

Statistical analysis
The dependence of nonspecific CD8+ T-cell staining intensity on tetramer

concentration and the KD of the pMHCI/CD8 interaction was assessed using

the Friedman test for one-way effects and the Jonckheere–Terpstra test for the

dependent variable increasing with the treatment variable.47
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