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Abstract

IMPORTANCE Traumatic brain injuries (TBI) represent an important, potentially modifiable risk
factor for dementia. Despite frequently observed vascular imaging changes in individuals with TBI,
the relationships between TBI-associated changes in brain imaging and clinical outcomes have
largely been overlooked in community cases of TBI.

OBJECTIVE To assess whether TBI are associated with and interact with midlife changes in
neuroimaging and clinical features in otherwise healthy individuals.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional analysis used baseline data from the
PREVENT Dementia program collected across 5 sites in the UK and Ireland between 2014 and 2020.
Eligible participants were cognitively healthy midlife adults aged between 40 and 59 years. Data
were analyzed between January 2023 and April 2024.

EXPOSURE Lifetime TBI history was assessed using the Brain Injury Screening Questionnaire.

MAIN OUTCOMES AND MEASURES Cerebral microbleeds and other markers of cerebral small
vessel disease (white matter hyperintensities [WMH], lacunes, perivascular spaces) were assessed
on 3T magnetic resonance imaging. Clinical measures were cognition, sleep, depression, gait, and
cardiovascular disease (CVD) risk, assessed using Computerized Assessment of Information
Processing (COGNITO), Pittsburgh Sleep Quality Index, Center for Epidemiologic Studies Depression
Scale, clinical interviews, and the Framingham Risk Score, respectively.

RESULTS Of 617 participants (median [IQR] age, 52 [47-56] years; 380 female [61.6%]), 223 (36.1%)
had a history of TBI. TBI was associated with higher microbleed count (β = 0.10; 95% CI, 0.01-0.18;
P = .03), with a dose-response association observed with increasing number of TBI events (β = 0.05;
95% CI, 0.01-0.09; P = .03). Conversely, TBI was not associated with other measures of small vessel
disease, including WMH. Furthermore, TBI moderated microbleed associations with vascular risk
factors and clinical outcomes, such that associations were present only in the absence of TBI.
Importantly, observations held when analyses were restricted to individuals reporting only mild TBI.

CONCLUSIONS AND RELEVANCE In this cross-sectional study of healthy middle-aged adults,
detectable changes in brain imaging and clinical features were associated with remote, even mild, TBI
in the general population. The potential contribution of vascular injury to TBI-related
neurodegeneration presents promising avenues to identify potential targets, with findings
highlighting the need to reduce TBI through early intervention and prevention in both clinical care
and policymaking.
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Key Points
Question Does remote traumatic brain

injury (TBI) history relate to observable

changes in neuroimaging and clinical

features in a general population of middle-

aged adults?

Findings In this cross-sectional

investigation of 617 healthy middle-aged

adults, history of even mild TBI was

associated with detectable changes in

neuroimaging and clinical outcomes.

Participants with prior TBI experienced

poorer sleep and depressive symptoms,

but with no significant change in

cognition.

Meaning These findings underscore

the potential long-lasting brain health

consequences of even mild TBI, with the

prospect that these might be detectable

long before expected clinical

manifestations of related

neurodegenerative disease, presenting

a target for risk stratification and

intervention.
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Introduction

Traumatic brain injury (TBI) is increasingly recognized as an important and modifiable risk factor for
dementia.1 However, the biological processes driving an acute biomechanical injury to a chronic,
lifelong pathology associated with late neurodegenerative disease remain uncertain.2,3 Among
TBI-related pathologies, vascular injury is recognized as a common pathology, with outcomes ranging
from macrovascular or microvascular hemorrhage to blood-brain barrier disruption.4-6 Studies on
TBI-related neuroimaging changes have largely focused on contact sports athletes (eg, American
football players, professional fighters) or inpatient trauma units,7-9 which tend to be limited by
smaller sample sizes and have higher exposure or severity of TBI. Conversely, TBI-related changes in
brain imaging and clinical outcomes have largely been overlooked in the everyday context of healthy
midlife adults, especially in relation to mild TBI.

Cerebral microbleeds (CMB) reflect hemosiderin deposition resulting from microvascular
injury10-13 and are considered key markers of cerebral small vessel disease (SVD).14,15 However, CMB
can also arise as a consequence of TBI, which is often overlooked in research exploring their clinical
and prognostic utility.5 Specifically, TBI as a contributor to CMB is rarely considered in the study of
SVD, which could potentially explain why the clinical correlates of SVD are not consistently
demonstrated in CMB research.10,16-18As a key marker of SVD, one may reasonably expect CMB to
relate to well-established correlates of SVD itself, such as vascular risk factors (eg, hypertension) and
clinical manifestations of SVD like cognitive impairment, gait disturbances, depression, and disturbed
sleep.19,20 Therefore, the inconsistent and often nonexistent link between CMB and these
established variables presents an apparent contradiction that warrants deeper investigation.5

To address these uncertainties, we leverage comprehensive imaging, clinical, and
sociodemographic data of otherwise healthy individuals to investigate the associations of lifetime TBI
history with early (midlife) SVD and clinical features (aim 1), and the possible influence of TBI history
on the associations between CMB and measures of vascular risk factors and clinical deficits (aim 2).
We hypothesized that these associations would be weaker in individuals with TBI, given that
TBI-induced CMB may result as a consequence of head trauma rather than underlying
microvascular disease.21-24

Methods

Participants
Participants were recruited as part of the PREVENT Dementia program25 (study protocol published
elsewhere).26-29 Participants had to be cognitively healthy (no dementia or other neurological
conditions) middle-aged adults (aged 40 to 59 years). Of the 700 recruited, 617 were included based
on completeness of imaging and TBI data, and absence of incidental magnetic resonance imaging
(MRI) findings (eFigure 1 in Supplement 1). Data were collected across 5 sites in the UK and Ireland
between 2014 and 2020, and analyzed between January 2023 to April 2024.

The study was approved by the London-Camberwell St Giles National Health Service Ethics
Committee, which operates according to the Helsinki Declaration of 1975.30 All participants gave
written informed consent. This study follows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline.

Quantification of Cerebral Small Vessel Disease
Imaging markers of SVD were assessed on 3T MRI (Siemens; acquisition parameters in eAppendix of
Supplement 1) according to the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE)
guidelines.14 CMB were assessed on 3T susceptibility-weighted imaging scans using the Microbleed
Anatomical Rating Scale (MARS),31 and cross-validated on T1- and T2-weighted images. Lacunes were
assessed on T1-weighted, T2-weighted, and FLAIR images.14 Lacunes and CMB were classified by
location as deep or lobar. WMH volumes were extracted from lesion maps created on FLAIR MRI
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using an automated script on SPM12.32 All WMH maps were visually inspected and manually
corrected for misclassifications, and WMH volumes were normalized by total intracranial volume.
Perivascular spaces (PVS) were assessed separately in the basal ganglia (BG) and centrum semiovale
(CSO) on T2-weighted scans using a validated rating scale.33 Raters were masked to all clinical
information, including TBI history. Further details on SVD quantification and interrater reliability
evaluation can be found in the eAppendix in Supplement 1 and previous publications.28,34

Clinical and Neuropsychological Assessment
Cognitive performance was assessed using the Computerized Assessment of Information Processing
(COGNITO) battery.35 Composite scores for each cognitive domain were computed by averaging the
z-scores of relevant tasks in each domain as previously defined (eAppendix in Supplement 1).35,36

Depression was measured using the Center for Epidemiologic Studies Depression Scale (CES-D).37

Quality of sleep was measured with the Pittsburgh Sleep Quality Index (PSQI).38 For the CES-D and
PSQI, higher scores indicate greater depressive symptoms and sleep disturbances, respectively
(eAppendix in Supplement 1). Gait disturbances were assessed as part of neurological examinations
by a qualified clinician and assigned binary classifications (normal, abnormal). Alcohol intake was
dichotomized using a cut-off of more than 21 units per week.

Assessment of Traumatic Brain Injury
History of TBI was assessed using the Brain Injury Screening Questionnaire (BISQ).39 The BISQ
includes structured recall cues to aid individuals’ recall of injuries, using 20 scenarios where head
injuries may have occurred with a further option to record injuries not otherwise listed. For each item
endorsed, participants are asked whether this resulted in a loss of consciousness (LOC) or being
dazed and confused, and for how long. Participants with TBI were defined as those experiencing at
least 1 blow to the head resulting in LOC, with mild TBI (mTBI) defined where LOC was less than 30
minutes (eAppendix in Supplement 1).40

Assessment of Cardiovascular Risk
Risk of cardiovascular disease (CVD) was assessed using the Framingham Risk Score,41 an established
tool for estimating 10-year cardiovascular risk using a sex-specific multivariable algorithm. The
Framingham Risk Score is based on age, systolic blood pressure (BP), use of antihypertensive
medication, current smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol
(HDL). Computation and cut-offs used to derive the Framingham Risk Score are adapted from Wilson
and colleagues.41

Statistical Analysis
Standard statistical techniques were used for descriptive analyses (Table 1; eAppendix in
Supplement 1). Unless otherwise stated, all regression models adjusted for sex, age, education, and
study site. Models were constructed to assess (1) TBI and other risk factors associated with SVD, (2)
the association of TBI with clinical and imaging measures, (3) if TBI may moderate the association
between CMB and expected clinical correlates, and (4) the relative contribution of TBI and vascular
risk factors to clinical deficits in the subset of participants with TBI. For how TBI and other risk factors
(age, CVD risk, hypertension, apolipoprotein E ε4 [APOE4]) are associated with SVD, adjusted
regression models were independently fitted in separate models with risk factors as exposure
variables and SVD markers as outcome variables (included in aim 1). To examine how TBI related to
clinical and imaging measures, adjusted regression models were fitted to markers of SVD (WMH
volume, PVS, CMB, lacunes) and clinical measures (PSQI, gait disturbances, CES-D score of
depression, cognition) with TBI as the exposure variable (aim 1). To investigate whether TBI
moderated associations between CMB and expected clinical correlates, interaction analysis was
conducted with CMB × TBI interaction terms fitted to outcome variables (eg, cognition, CVD risk)
(aim 2). To compare the relative contribution of TBI and vascular risk factors to clinical deficits in the
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subset of participants with prior TBI, dominance analysis and relative weights analysis were
conducted (eAppendix in Supplement 1).42,43 Outcome variables were clinical deficits (poor sleep,
gait disturbances, depressive symptoms, cognition) while exposure variables were TBI (number of
TBI events) and individual components of the Framingham Risk Score (sex, age, systolic BP, total
cholesterol, HDL, diabetes, smoking) (secondary analysis).

All analyses were conducted in the full sample and repeated in a subgroup of individuals to
compare mild TBI and non-TBI controls (eAppendix in Supplement 1), where applicable. As part of
sensitivity analysis, TBI-SVD associations and moderation analyses were repeated to include the
additional covariates of (1) smoking and (2) smoking, APOE4, hypertension, hyperlipidaemia,
diabetes, alcohol, and Framingham Risk Score for CVD. All analyses were conducted using R version
4.4.0 (R Project for Statistical Computing) with statistical significance set at P = .05 in 2-sided tests.

Results

Cohort Characteristics
Of the 617 participants (median [IQR] age, 52 [47-56] years; 380 women [51.6%]; median [IQR]
education, 17 [14-19] years), approximately one-third of participants (223 [36.1%]) reported at least 1
TBI with LOC; of these, 125 (56.1%) reported a single event, 61 (27.4%) reported 2 TBI events, and 37
(16.6%) reported more than 2 events (Table 1). Of the 223 participants with a history of TBI, 170
(76.2%) had sufficient information reported on the BISQ to determine injury severity, of which 160
(94.1%) reported a history of mTBI and 10 (5.9%) moderate-severe incidents (LOC 30 minutes or
longer). TBI was more common in male (116 [48.9%]) than female participants (107 [28.2%]) (OR,
2.45; 95% CI, 1.74-3.43), but did not differ by age, education, APOE4, hypertension, hyperlipidaemia,
diabetes, alcohol intake or CVD risk score (Table 1). However, individuals with prior TBI were more
likely to be current smokers (OR, 2.48; 95% CI, 1.24-4.94), even after controlling for sex (OR, 2.28;
95% CI, 1.13-4.70). CMB were detected in approximately 1 in 6 participants (109 [17.7%]); most had 1
to 3 CMB recorded (103 [16.7%]), while very few had more than 3 CMB (6 [1.0%]). Regionally, lobar
CMB were detected in 86 participants (13.9%), deep CMB in 30 (4.9%), and infratentorial CMB in 2
(0.3%); 9 participants (1.5%) had both deep and lobar CMB.

Association of SVD Markers With CVD Risk Score
As expected, higher CMB counts were associated with older age (β = 0.07; 95% CI, 0.03-0.11),
adjusting for sex, education, and study site; those aged 50 years or more were 1.81 (β = 0.05; 95% CI,

Table 1. Sample Characteristics

Variable
Whole sample,
No. (%) (N = 617)

Group differences

No TBI (n = 394) With TBI (n = 223) P value
Sex

Female 380 (61.6) 273 (69.3) 107 (48.0%)
<.001

Male 237 (38.4) 121 (30.7) 116 (52.0%)

Age, mean (SD), y 51.2 (5.5) 51.4 (5.4) 50.8 (5.6) .19

Education, mean (SD), y 16.7 (3.5) 16.9 (3.6) 16.5 (3.2) .16

APOE4 233 (37.8) 153 (38.8) 80 (35.9) .49

Family history 323 (52.4) 213 (54.1) 110 (49.3) .30

Hypertension 106 (17.2) 59 (15.0) 47 (21.1) .07

Hyperlipidaemia 74 (12.0) 45 (11.4) 29 (13.0) .70

Diabetes 17 (2.8) 11 (2.8) 6 (2.7) >.99

BMI, mean (SD) 27.4 (5.1) 27.4 (5.1) 27.5 (5.1) .79

Current smoker 35 (5.7) 15 (3.8) 20 (9.0) .01

High alcohol intakea 88 (14.3) 52 (13.2) 36 (16.1) .38

CVD risk, mean (SD)b 8.0 (3.9) 7.8 (3.7) 8.4 (4.2) .12

Abbreviations: APOE4, apolipoprotein E ε4; BMI, body
mass index (calculated as weight in kilograms divided
by height in meters squared); CVD risk, cardiovascular
disease risk; TBI, traumatic brain injury.
a High alcohol intake is defined as more than 21 units

per week.
b CVD risk assessed using the Framingham Risk Score.
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1.14-2.95) times more likely to have CMB. However, CMB were not related to CVD risk, contrary to
other SVD markers which were positively associated with CVD risk. Specifically, higher CVD risk was
associated with greater WMH volume, lacunes, and PVS (in BG, but not CSO) (eTable 2 in
Supplement 1).

Association of TBI With SVD Markers
In adjusted analysis, CMB numbers were greater in individuals with prior TBI than in those without
TBI, with a dose-response association observed with increasing number of TBI events (95% CI, 0.01-
0.09) (eTable 3 in Supplement 1). By contrast, TBI history was not associated with WMH volume,
lacunes, or PVS. This association held for mTBI, where CMB, but not other SVD markers, were
associated with mTBI history. Results were unchanged in sensitivity analyses adjusting for the
additional covariate(s) of smoking alone (model 2), or smoking, APOE4, hypertension,
hyperlipidaemia, diabetes, alcohol, and CVD risk score (model 3) (eTable 3 in Supplement 1).

Moderation Analysis of TBI on the Association Between CMB
and Vascular Risk Factors
In interaction analyses adjusting for age, sex, education, and study site, TBI × CMB interaction on
CVD risk score was significant. Specifically, the association between CMB and higher CVD risk was
diminished as number of TBI events increased; regionally, this was observed for lobar CMB, but not
global or deep CMB. This was also observed when analyzing hypertension alone, where lobar and
global CMB interactions with TBI on CVD were present, but not deep CMB. There was no TBI × CMB
interaction in relation to APOE4 (Figure 1, Table 2).

Moderation Analysis of TBI on Associations Between CMB
and Clinical Outcome Measures
Significant TBI × CMB interactions on cognition were demonstrated for the domains of memory and
language, whereby associations between CMB and cognition were diminished as number of TBI events
increased (Figure 2; Table 2). Again, these applied to lobar, but not deep, CMB. No TBI × CMB
interactions were detected on attention or visuospatial function. Similar interactions were observed in
relation to gait, although regional patterns were reversed, whereby TBI interacted with deep, but not
lobar, CMB. Again, observations held in mTBI subgroup analyses, such that mTBI × CMB interactions
were demonstrated in relation to memory and gait but not attention or visuospatial function.

Association of TBI With Clinical Deficits
In adjusted regression models, greater numbers of TBI events were associated with poorer sleep, gait
disturbances, greater depression symptoms, and memory but not attentional deficits (eTable 4 in
Supplement 1). These findings were echoed in the mTBI subgroup, where higher numbers of TBI
events were related to poorer sleep, depression, and gait, but not any cognitive domain. Results were
unchanged in sensitivity analysis adjusting for different sets of covariates (eTable 4 in Supplement 1).

Within the TBI group, we examined the relative contribution of TBI and CVD risk to clinical deficits
using dominance analysis and relative weights analysis. Results demonstrated that TBI itself was the
most important factor contributing toward depression and sleep (but not cognition or gait), outweighing
the contribution of individual CVD risk factors (Figure 3). In relation to depression, TBI achieved
complete dominance over each individual CVD exposure variables (contribution to R2 = 38.5%). In
relation to sleep, TBI displayed complete dominance over all CVD variables except diabetes, which TBI
generally (but not completely) dominated (TBI, 47.1% vs diabetes, 36.2%). In relation to gait
disturbances, TBI had complete dominance over all other exposure variables except for systolic BP,
which was in complete dominance of TBI and all other factors (TBI, 17.7% vs systolic BP, 51.0%).
While TBI dominated CVD risk factors (eg, diabetes, high BP) in contributing toward memory deficits, the
main dominating factors were sex and age. On the other hand, TBI was not a key contributor to
attentional deficits.
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Discussion

These data demonstrate that in otherwise healthy middle-aged adults, remote TBI history was
associated with detectable changes in vascular brain imaging and clinical features. Among the SVD
markers analyzed, MRI-detected cerebral microbleeds (CMB) were the only markers (1) associated
with TBI and (2) not to the Framingham Risk Score. Conversely, all other SVD markers were
associated with CVD risk but not TBI. Intriguingly, CMB associations with cardiovascular disease
(CVD) risk emerged only in the subset of individuals without prior TBI history, but not in the TBI
subgroup. CMB associations with various clinical measures were also moderated by TBI, such that
effect sizes in the association between CMB and clinical deficits were diminished in those with TBI.
Importantly, findings were replicated in analysis restricted to mild TBI.

Figure 1. Cerebral Microbleeds Associated With Modifiable Vascular Risk Factors in the Absence of TBI History
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The lack of association between CMB and vascular risk factors in the TBI group suggests that CMB
in these individuals may be less likely driven by chronic vascular pathology, and more likely to be acquired
from TBI (what may be described as traumatic CMB). In support of this, results were regionally restricted
to lobar CMB but not deep CMB. This is consistent with the observation that while wider chronic vascular
disease more typically relates to the development of subcortical CMB,44,45 lobar CMB often stem from
origins other than underlying vascular disease, including TBI.4,5 While further research on the regional
distribution of traumatic CMB is required, findings suggest that CMB detected in lobar regions warrant
greater consideration of nonvascular causes, especially when detected in younger individuals.

In the non-TBI group, CMB burden was associated with the expected cognitive and functional
impairments characteristic of SVD, although these associations were diminished in those with TBI
history. The greater clinical impairments accompanying CMB in our non-TBI group could be attributed
eto underlying chronic vascular alterations and more widespread cerebrovascular dysfunction. That
said, longitudinal analyses of larger prospective cohorts will be needed to (1) elucidate longer-term
effects of traumatic CMB, which did not relate to clinical impairments at baseline but may confer
differential effects on long-term clinical trajectory and/or downstream pathological processes

Table 2. Moderating Effect of Traumatic Brain Injury (TBI) on the Association Between Cerebral Microbleeds (CMB)
and Clinical Measures

Outcome T value P value Estimate, β (95% CI)
Clinical measuresa

Memory

Global CMBb 2.35 .02 0.14 (0.02 to 0.26)

Lobar CMBb 2.03 .04 0.14 (0.004 to 0.27)

Deep CMB 1.06 .29 0.11 (−0.09 to 0.31)

Language

Global CMBb 2.07 .04 0.14 (0.01 to 0.27)

Lobar CMBb 2.10 .04 0.16 (0.01 to 0.30)

Deep CMB −0.62 .54 −0.07 (−0.30 to 0.15)

Attention

Global CMB 1.72 .09 0.09 (−0.01 to 0.20)

Lobar CMB 1.59 .11 0.09 (−0.02 to 0.21)

Deep CMB 0.80 .43 0.07 (−0.11 to 0.26)

Visuospatial

Global CMB −0.76 .45 −0.05 (−0.17 to 0.07)

Lobar CMB 0.09 .93 −0.01 (−0.14 to 0.13)

Deep CMB −0.76 .45 −0.08 (−0.28 to 0.13)

Gait

Global CMBb −2.19 .03 −0.03 (−0.06 to −0.004)

Lobar CMB −0.89 .38 −0.02 (−0.05 to 0.02)

Deep CMBb −2.65 .01 −0.07 (−0.12 to −0.02)

Risk factorsa

CVD risk scorec

Global CMB −1.70 .09 −0.06 (−0.13 to 0.01)

Lobar CMBb −2.61 .01 −0.10 (−0.18 to −0.02)

Deep CMB 0.90 .37 0.06 (−0.07 to 0.18)

Hypertension

Global CMB −1.37 .17 −0.35 (−0.86 to 0.15)

Lobar CMBb −2.38 .02 −0.73 (−1.32 to −0.14)

Deep CMB 0.54 .59 0.22 (−0.60 to 1.06)

APOE4

Global CMB −0.39 .70 −0.09 (−0.52 to 0.34)

Lobar CMB 0.94 .35 0.23 (−0.26 to 0.73)

Deep CMB −1.13 .26 −0.43 (−1.23 to 0.30)

Abbreviations: APOE4, apolipoprotein E ε4; CMB,
cerebral microbleeds; CVD, cardiovascular disease.
a Analyses were adjusted for sex, age, years of

education, and study site. General linear regression
models were fitted for the continuous outcome
variables of memory, language, and CVD risk score
(estimates and 95% CI are in standardized units),
while logistic regression was applied for the binary
outcome variables of gait, hypertension, and APOE4
(estimates and 95% CI are in log-odds).

b Statistically significant; P < .05, 95% CI does not
include zero.

c Framingham Risk Score.
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compared with vascular CMB, and (2) shed light on the mechanistic link between TBI and CMB, by
examining whether TBI-related CMB occur as a direct result of the impact (eg, shear forces) or by
initiating microvascular fragility leading to higher risk of developing CMB.5

Sex differences were consistent with past research, whereby TBI were more prevalent in men
than in women.46 Within our cohort of healthy middle-aged adults, almost half of male participants
(48.7%) reported at least 1 TBI event, compared with 28.1% of female participants. While male
participants tend to present with greater SVD burden compared with female participants,47 we
previously found that this sex difference was rendered nonsignificant once accounting for modifiable
dementia risk factors (including TBI),28 implying that sex differences in SVD could be attributed to

Figure 2. Cerebral Microbleeds Associated With Poorer Clinical Outcomes in the Absence of TBI History
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greater prevalence of certain risk factors in men.48 Taken together with our present findings, the
cumulative evidence underscores the importance of considering sex differences to elucidate the
pathophysiology and etiology of CMB, and perhaps SVD by extension.

Overall, our findings have important implications for future research directions, as well as informing
clinical practices and policymaking at the community level. While CMB are largely presumed to originate
from chronic vascular etiology, our results draw attention to alternative explanations such as TBI. Using a
structured TBI screening tool, we identified a sizable proportion of individuals with TBI history within a
healthy middle-aged community sample. Therefore, trauma-induced CMB are likely to be present in
most research samples and may distort results and interpretations of analyses that are performed on the
assumption that CMB represents chronic SVD. When unaccounted for, TBI may obscure the clinical
importance of CMB, potentially explaining the inconsistent results in prior research regarding CMB
associations with clinical correlates that are well-established in other SVD markers.

Clinically, recognizing the differential etiologies and clinical consequences between traumatic
vs vascular CMB could help clinicians by informing treatment decisions and improving prognostic
accuracy. While the primary insult of the TBI event cannot be reversed, appropriate clinical
interventions could mitigate the downstream cascade of secondary damage to the cerebrovascular
network, eg, cerebral blood flow, inflammation, blood-brain barrier, and oxidative stress.22

Therefore, we recommend the inclusion of TBI assessments in relevant research studies and clinical
assessments to aid the interpretation of underlying etiologies and their clinical implications.

In the community, interventions could focus on prevention (eg, improving safety in sports and
recreation and occupational health safety standards) and public education campaigns (eg, raising
awareness of the activities associated with TBI risk, recognition of symptoms and encouraging
prompt medical attention following TBI). Therefore, while risk modification often focuses on the role
of individuals to modify their own behaviors, structural interventions (eg, through policymaking) will
be fundamental to reducing risk at a societal level, and more equitably.49

Limitations
Study limitations include potentially limited generalizability of findings to the broader population
given the predominantly White and higher-educated participants in our cohort.29 Furthermore, self-
reported measures based on retrospective recall are susceptible to misreporting, although this is
mitigated through the structured BISQ tool, which prompts recall of specific situations where head
injuries could occur. For CMB detection, future studies with greater CMB burden could benefit from

Figure 3. Relative Contribution of Risk Factors on Clinical Outcome Measures
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automated methods (eAppendix in Supplement 1). Other fundamental limitations include volunteer
bias and the cross-sectional design.

Conclusions

History of TBI, even mild TBI, was associated with detectable alterations in clinical and neuroimaging
measures as early as midlife. These findings highlight the potential brain health consequences of TBI and
provide one possible pathological mechanism driving TBI-related neurodegeneration. Our data suggest
that TBI-related clinical features (eg, depression, poorer sleep) may operate via cerebrovascular injury,
which also correlate with other dementia risk factors. These observations underscore potential
intervention targets for dementia prevention in patients with TBI, and avenues for future research.
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