171 research outputs found

    Evaluating Asset-Market Effects of Unconventional Monetary Policy: A Cross-Country Comparison

    Get PDF
    This discussion paper is available for download from the Social Science Research Network electronic library. To view this article in its entirety please see the related resources section above

    WISE/NEOWISE Observations of Comet 103P/Hartley 2

    Get PDF
    We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg

    WISE/NEOWISE observations of Active Bodies in the Main Belt

    Get PDF
    We report results based on mid-infrared photometry of 5 active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on April 2-3, 2010, three months after its peak activity. Photometry of the coma at 12 and 22 {\mu}m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlogn/dlogm, yielding power-law slope values of {\alpha} = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 & CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2.Comment: 32 Pages, including 5 Figure

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation

    Get PDF
    Significance The Fe(II)- and 2-oxoglutarate (2OG)-dependent hypoxia-inducible transcription factor prolyl-hydroxylases play a central role in human oxygen sensing and are related to other prolyl-hydroxylases involved in eukaryotic collagen biosynthesis and ribosomal modification. The finding that a PHD-related prolyl-hydroxylase in Pseudomonas spp. regulates pyocyanin biosynthesis supports prokaryotic origins for the eukaryotic prolyl-hydroxylases. The identification of the switch I loop of elongation factor Tu (EF-Tu) as a Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) substrate provides evidence of roles for 2OG oxygenases in both translational and transcriptional regulation. A structure of the PPHD:EF-Tu complex, the first to the authors' knowledge of a 2OG oxygenase with its intact protein substrate, reveals that major conformational changes occur in both PPHD and EF-Tu and will be useful in the design of new prolyl-hydroxylase inhibitors. </jats:p

    Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score

    Get PDF
    Background: Patients with cancer are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and COVID-19. We investigated systemic inflammation as a driver of severity and mortality from COVID-19, evaluating the prognostic role of commonly used inflammatory indices in SARS-CoV-2-infected patients with cancer accrued to the OnCovid study. Methods: In a multicenter cohort of SARS-CoV-2-infected patients with cancer in Europe, we evaluated dynamic changes in neutrophil:lymphocyte ratio (NLR); platelet:lymphocyte ratio (PLR); Prognostic Nutritional Index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow Prognostic Score (mGPS); and Prognostic Index (PI) in relation to oncological and COVID-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. Results: We evaluated 1071 eligible patients, of which 625 (58.3%) were men, and 420 were patients with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≥1 comorbidity and 754 (70.4%) had ≥1 COVID-19 complication. NLR, OIS, and mGPS worsened at COVID-19 diagnosis compared with pre-COVID-19 measurement (p<0.01), recovering in survivors to pre-COVID-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (p<0.001) and shorter median overall survival in the training and validation sets (p<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 to 4.20, p=0.001; adjusted concordance index score 0.611). Conclusions: Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected patients with cancer and can be used as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe COVID-19, supporting their use for risk stratification. Reversal of the COVID-19-induced proinflammatory state is a putative therapeutic strategy in patients with cancer

    COVID-19 Sequelae and the Host Pro-Inflammatory Response: An Analysis From the OnCovid Registry

    Get PDF
    Background: Fifteen percent of patients with cancer experience symptomatic sequelae, which impair post–COVID-19 outcomes. In this study, we investigated whether a proinflammatory status is associated with the development of COVID-19 sequelae. / Methods: OnCovid recruited 2795 consecutive patients who were diagnosed with Severe Acute Respiratory Syndrome Coronavirus 2 infection between February 27, 2020, and February 14, 2021. This analysis focused on COVID-19 survivors who underwent a clinical reassessment after the exclusion of patients with hematological malignancies. We evaluated the association of inflammatory markers collected at COVID-19 diagnosis with sequelae, considering the impact of previous systemic anticancer therapy. All statistical tests were 2-sided. / Results: Of 1339 eligible patients, 203 experienced at least 1 sequela (15.2%). Median baseline C-reactive protein (CRP; 77.5 mg/L vs 22.2 mg/L, P < .001), lactate dehydrogenase (310 UI/L vs 274 UI/L, P = .03), and the neutrophil to lymphocyte ratio (NLR; 6.0 vs 4.3, P = .001) were statistically significantly higher among patients who experienced sequelae, whereas no association was reported for the platelet to lymphocyte ratio and the OnCovid Inflammatory Score, which includes albumin and lymphocytes. The widest area under the ROC curve (AUC) was reported for baseline CRP (AUC = 0.66, 95% confidence interval [CI]: 0.63 to 0.69), followed by the NLR (AUC = 0.58, 95% CI: 0.55 to 0.61) and lactate dehydrogenase (AUC = 0.57, 95% CI: 0.52 to 0.61). Using a fixed categorical multivariable analysis, high CRP (odds ratio [OR] = 2.56, 95% CI: 1.67 to 3.91) and NLR (OR = 1.45, 95% CI: 1.01 to 2.10) were confirmed to be statistically significantly associated with an increased risk of sequelae. Exposure to chemotherapy was associated with a decreased risk of sequelae (OR = 0.57, 95% CI: 0.36 to 0.91), whereas no associations with immune checkpoint inhibitors, endocrine therapy, and other types of systemic anticancer therapy were found. / Conclusions: Although the association between inflammatory status, recent chemotherapy and sequelae warrants further investigation, our findings suggest that a deranged proinflammatory reaction at COVID-19 diagnosis may predict for sequelae development

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted
    corecore