268 research outputs found

    Circadian polymorphisms associated with affective disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical symptoms of affective disorders, their response to light treatment, and sensitivity to other circadian interventions indicate that the circadian system has a role in mood disorders. Possibly the mechanisms involve circadian seasonal and photoperiodic mechanisms. Since genetic susceptibilities contribute a strong component to affective disorders, we explored whether circadian gene polymorphisms were associated with affective disorders in four complementary studies.</p> <p>Methods</p> <p>Four groups of subjects were recruited from several sources: 1) bipolar proband-parent trios or sib-pair-parent nuclear families, 2) unrelated bipolar participants who had completed the BALM morningness-eveningness questionnaire, 3) sib pairs from the GenRed Project having at least one sib with early-onset recurrent unipolar depression, and 4) a sleep clinic patient group who frequently suffered from depression. Working mainly with the SNPlex assay system, from 2 to 198 polymorphisms in genes related to circadian function were genotyped in the participant groups. Associations with affective disorders were examined with TDT statistics for within-family comparisons. Quantitative trait associations were examined within the unrelated samples.</p> <p>Results</p> <p>In <it>NR1D1</it>, rs2314339 was associated with bipolar disorder (P = 0.0005). Among the unrelated bipolar participants, 3 SNPs in <it>PER3 </it>and <it>CSNK1E </it>were associated with the BALM score. A <it>PPARGC1B </it>coding SNP, rs7732671, was associated with affective disorder with nominal significance in bipolar family groups and independently in unipolar sib pairs. In <it>TEF</it>, rs738499 was associated with unipolar depression; in a replication study, rs738499 was also associated with the QIDS-SR depression scale in the sleep clinic patient sample.</p> <p>Conclusion</p> <p>Along with anti-manic effects of lithium and the antidepressant effects of bright light, these findings suggest that perturbations of the circadian gene network at several levels may influence mood disorders, perhaps ultimately through regulation of MAOA and its modulation of dopamine transmission. Twenty-three associations of circadian polymorphisms with affective symptoms met nominal significance criteria (P < 0.05), whereas 15 would be expected by chance, indicating that many represented false discoveries (Type II errors). Some evidence of replication has been gathered, but more studies are needed to ascertain if circadian gene polymorphisms contribute to susceptibility to affective disorders.</p

    Delayed sleep phase cases and controls

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Susceptibility of schizophrenia and affective disorder not associated with loci on chromosome 6q in Han Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several linkage studies across multiple population groups provide convergent support for susceptibility loci for schizophrenia – and, more recently, for affective disorder – on chromosome 6q. We explore whether schizophrenia and affective disorder have common susceptibility gene on 6q in Han Chinese population.</p> <p>Methods</p> <p>In the present study, we genotyped 45 family trios from Han Chinese population with mixed family history of schizophrenia and affective disorder. Twelve short tandem repeat (STRs) markers were selected, which covered 102.19 cM on chromosome 6q with average spacing 9.29 cM and heterozygosity 0.78. The transmission disequilibrium test (TDT) was performed to search for susceptibility loci to schizophrenia and affective disorder.</p> <p>Results</p> <p>The results showed STRs D6S257, D6S460, D6S1021, D6S292 and D6S1581 were associated with susceptibility to psychotic disorders. When families were grouped into schizophrenia and affective disorder group, D6S257, D6S460 and D6S1021, which map closely to the centromere of chromosome 6q, were associated with susceptibility to schizophrenia. Meanwhile, D6S1581, which maps closely to the telomere, was associated with susceptibility to affective disorder. But after correction of multiple test, all above association were changed into no significance (P > 0.05).</p> <p>Conclusion</p> <p>These results suggest that susceptibility of schizophrenia and affective disorder not associated with loci on chromosome 6q in Han Chinese population.</p

    A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression.

    Get PDF
    Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate &lt; 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P &lt; 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response

    Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20

    Get PDF
    OBJECTIVE: Our aim is to map chromosomal regions that harbor loci that increase susceptibility to bipolar disorder. METHODS: We analyzed 644 bipolar families ascertained by the National Institute of Mental Health Human Genetics Initiative for bipolar disorder. The families have been genotyped with microsatellite loci spaced every approximately 10 cM or less across the genome. Earlier analyses of these pedigrees have been limited to nonparametric (model-free) methods and thus, information from unaffected subjects with genotypes was not considered. In this study, we used parametric analyses assuming dominant and recessive transmission and specifying a maximum penetrance of 70%, so that information from unaffecteds could be weighed in the linkage analyses. As in previous linkage analyses of these pedigrees, we analyzed three diagnostic categories: model 1 included only bipolar I and schizoaffective, bipolar cases (1565 patients of whom approximately 4% were schizoaffective, bipolar); model 2 included all individuals in model 1 plus bipolar II patients (1764 total individuals); and model 3 included all individuals in model 2 with the addition of patients with recurrent major depressive disorder (2046 total persons). RESULTS: Assuming dominant inheritance the highest genome-wide pair-wise logarithm of the odds (LOD) score was 3.2 with D16S749 using model 2 patients. Multipoint analyses of this region yielded a maximum LOD score of 4.91. Under recessive transmission a number of chromosome 20 markers were positive and multipoint analyses of the area gave a maximum LOD of 3.0 with model 2 cases. CONCLUSION: The chromosome 16p and 20 regions have been implicated by some studies and the data reported herein provide additional suggestive evidence of bipolar susceptibility genes in these regions

    CRY2 Is Associated with Depression

    Get PDF
    Abnormalities in the circadian clockwork often characterize patients with major depressive and bipolar disorders. Circadian clock genes are targets of interest in these patients. CRY2 is a circadian gene that participates in regulation of the evening oscillator. This is of interest in mood disorders where a lack of switch from evening to morning oscillators has been postulated.We observed a marked diurnal variation in human CRY2 mRNA levels from peripheral blood mononuclear cells and a significant up-regulation (P = 0.020) following one-night total sleep deprivation, a known antidepressant. In depressed bipolar patients, levels of CRY2 mRNA were decreased (P = 0.029) and a complete lack of increase was observed following sleep deprivation. To investigate a possible genetic contribution, we undertook SNP genotyping of the CRY2 gene in two independent population-based samples from Sweden (118 cases and 1011 controls) and Finland (86 cases and 1096 controls). The CRY2 gene was significantly associated with winter depression in both samples (haplotype analysis in Swedish and Finnish samples: OR = 1.8, P = 0.0059 and OR = 1.8, P = 0.00044, respectively).We propose that a CRY2 locus is associated with vulnerability for depression, and that mechanisms of action involve dysregulation of CRY2 expression

    Translating genome-wide association findings into new therapeutics for psychiatry

    Get PDF
    Genome-wide association studies (GWAS) in psychiatry, once they reach sufficient sample size and power, have been enormously successful. The Psychiatric Genomics Consortium (PGC) aims for mega-analyses with sample sizes that will grow to (cumulatively) >1 million individuals in the next 5 years. This should lead to hundreds of new findings for common genetic variants across nine psychiatric disorders studied by the PGC. The new targets discovered by GWAS have the potential to restart largely stalled psychiatric drug development pipelines, and the translation of GWAS findings into the clinic is a key aim of the recently funded phase 3 of the PGC. This is not without considerable technical challenges. These approaches complement the other main aim of GWAS studies on risk prediction approaches for improving detection, differential diagnosis, and clinical trial design. This paper outlines the motivations, technical and analytical issues, and the plans for translating PGC3 findings into new therapeutics

    Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder

    Get PDF
    Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture
    • …
    corecore