377 research outputs found

    Some aspects of evolution and diffusion in European technology 1450-1750

    Get PDF
    Imperial Users onl

    Traffic Alert and Collision Avoidance System (TCAS): Cockpit Display of Traffic Information (CDTI) investigation. Phase 1: Feasibility study

    Get PDF
    The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight

    Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66317/1/j.1551-2916.2006.01143.x.pd

    Chapter XII: A Comparison and Scenario Analysis of Leading Data Mining Software

    Get PDF
    Finding the right software is often hindered by different criteria as well as by technology changes. We performed an analytic hierarchy process (AHP) analysis using Expert Choice to determine which data mining package was best suitable for us. Deliberating a dozen alternatives and objectives led us to a series of pair-wise comparisons. When further synthesizing the results, Expert Choice helped us provide a clear rationale for the decision. The issue is that data mining technology is changing very rapidly. Our article focused only on the major suppliers typically available in the market place. The method and the process that we have used can be easily applied to analyze and compare other data mining software or knowledge management initiatives

    Assessing the Accuracy of National Land Cover Dataset Area Estimates at Multiple Spatial Extents

    Get PDF
    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover (LULC) datasets but provide little insight into accuracy of area estimates of LULC classes derived from sampling units of varying size. Additionally, accuracy of landscape structure metrics calculated from area estimates cannot be determined solely from site-specific assessments. We used LULC data from Rhode Island and Massachusetts as reference to determine the accuracy of area measurements from the National Land Cover Dataset (NLCD) within spatial units ranging from 0.1 to 200 km2. When regressed on reference area, NLCD area of developed land, agriculture, forest, and water had positive linear relationships with high r2, suggesting acceptable accuracy. However, many of these classes also displayed mean differences (NLCD   REFERENCE), and linear relationships between the NLCD and reference were not one-to-one (i.e., low r2, β0 ≠ 0,  β1 ≠ 1), suggesting mapped area is different from true area. Rangeland, wetland, and barren were consistently, poorly classified

    Genetic Adaptation Associated with Genome-Doubling in Autotetraploid Arabidopsis arenosa

    Get PDF
    Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.Organismic and Evolutionary Biolog

    POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    Get PDF
    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument

    The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Get PDF
    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed

    Sustained NF-κB Activation and Inhibition in β-Cells Have Minimal Effects on Function and Islet Transplant Outcomes

    Get PDF
    The activation of the transcription factor NF-κB leads to changes in expression of many genes in pancreatic β-cells. However, the role of NF-κB activation in islet transplantation has not been fully elucidated. The aim of the present study was to investigate whether the state of NF-κB activation would influence the outcome of islet transplantation. Transgenic mice expressing a dominant active IKKβ (constitutively active) or a non-degradable form of IκBα (constitutive inhibition) under control of the rat insulin promoter were generated. Islets from these mice were transplanted into streptozotocin diabetic mice in suboptimal numbers. Further, the effects of salicylate (an inhibitor of NF-κB) treatment of normal islets prior to transplantation, and the effects of salicylate administration to mice prior to and after islet implantation were evaluated. Transplantation outcomes were not affected using islets expressing a non-degradable form of IκBα when compared to wild type controls. However, the transplantation outcomes using islets isolated from mice expressing a constitutively active mutant of NF-κB were marginally worse, although no aberrations of islet function in vitro could be detected. Salicylate treatment of normal islets or mice had no effect on transplantation outcome. The current study draws attention to the complexities of NF-κB in pancreatic beta cells by suggesting that they can adapt with normal or near normal function to both chronic activation and inhibition of this important transcription factor

    Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology

    Get PDF
    The brittle/ductile transition is a major rheologic boundary in the crust yet little is known about how or if rates of tectonic processes are influenced by this boundary. In this study we examine the slip history of the large-scale Naxos/Paros extensional fault system (NPEFS), Cyclades, Greece, by comparing published slip rates for the ductile crust with new thermochronological constraints on slip rates in the brittle regime. Based on apatite and zircon fission-track (AFT and ZFT) and (U–Th)/He dating we observe variable slip rates across the brittle/ductile transition on Naxos. ZFT and AFT ages range from 11.8 ± 0.8 to 9.7 ± 0.8 Ma and 11.2 ± 1.6 to 8.2 ± 1.2 Ma and (U–Th)/He zircon and apatite ages are between 10.4 ± 0.4 to 9.2 ± 0.3 Ma and 10.7 ± 1.0 to 8.9 ± 0.6 Ma, respectively. On Paros, ZFT and AFT ages range from 13.1 ± 1.4 Ma to 11.1 ± 1.0 Ma and 12.7 ± 2.8 Ma to 10.5 ± 2.0 Ma while the (U–Th)/He zircon ages are slightly younger between 8.3 ± 0.4 Ma and 9.8 ± 0.3 Ma. All ages consistently decrease northwards in the direction of hanging wall transport. Most of our new thermochronological results and associated thermal modeling more strongly support the scenario of an identical fault dip and a constant or slightly accelerating slip rate of 6–8 km Myr− 1 on the NPEFS across the brittle/ductile transition. Even the intrusion of a large granodiorite body into the narrowing fault zone at 12 Ma on Naxos does not seem to have affected the thermal structure of the area in a way that would significantly disturb the slip rate. The data also show that the NPEFS accomplished a minimum total offset of 50 km between 16 and 8 Ma
    corecore