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Abstract

The activation of the transcription factor NF-kB leads to changes in expression of many genes in pancreatic b-cells.
However, the role of NF-kB activation in islet transplantation has not been fully elucidated. The aim of the present study was
to investigate whether the state of NF-kB activation would influence the outcome of islet transplantation. Transgenic mice
expressing a dominant active IKKb (constitutively active) or a non-degradable form of IkBa (constitutive inhibition) under
control of the rat insulin promoter were generated. Islets from these mice were transplanted into streptozotocin diabetic
mice in suboptimal numbers. Further, the effects of salicylate (an inhibitor of NF-kB) treatment of normal islets prior to
transplantation, and the effects of salicylate administration to mice prior to and after islet implantation were evaluated.
Transplantation outcomes were not affected using islets expressing a non-degradable form of IkBa when compared to wild
type controls. However, the transplantation outcomes using islets isolated from mice expressing a constitutively active
mutant of NF-kB were marginally worse, although no aberrations of islet function in vitro could be detected. Salicylate
treatment of normal islets or mice had no effect on transplantation outcome. The current study draws attention to the
complexities of NF-kB in pancreatic beta cells by suggesting that they can adapt with normal or near normal function to
both chronic activation and inhibition of this important transcription factor.
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Introduction

Inflammatory cytokines such as INF-c, TNF-a and IL-1 have

been implicated in the autoimmune destruction of pancreatic b-

cells in type 1 diabetes [1]. Since NF-kB is both activated by these

cytokines, and drives their expression, considerable interest has

been focused on NF-kB in b-cells [2,3]. But the situation is

complex because NF-kB may increase the expression of both

proapoptotic and antiapoptotic genes, and patterns of gene

expression may vary depending on context and cell type. In b-

cells, cytokine-induced activation of NF-kB has been associated

with increased expression of inflammatory proteins such as iNOS

and COX-2, and nitric oxide (the product of iNOS) has been

implicated in IL-1b-induced b-cell death [4,5]. NF-kB activation

has also been associated with the enhanced expression of

proapoptotic and protective genes [6–8]. In vitro studies have

shown that the inhibition of NF-kB can protect beta cells against

cytokine-induced death [9–11]. However, others have suggested

that NF-kB activation could play a protective role preventing

TNF-induced b-cell apoptosis [12]. Indeed, it has been suggested

that NF-kB may play a biphasic role in cytokine-induced b-cell

death, by initially protecting the b-cells before leading to apoptosis

[13]. It has also been recently suggested that NF-kB may act as an

antiapoptotic factor in normoxic conditions but act as an apoptotic

factor in hypoxic conditions [14]. Studies have shown that

genetically modified mice with disrupted NF-kB may be resistant

to b-cell toxins, such as multiple low-dose streptozotocin injections

[15,16]. In transplantation settings it has been suggested that acute

inhibition of NF-kB can improve islet transplantation outcome

[14,17–21].

Transplantation of islets is an important breakthrough in the

treatment of Type 1 diabetes [22]. It can reverse hyperglycaemia

in humans [23], but long-term success is limited [24], indicating a

failure to maintain islet mass. Because NF-kB is a potentially useful

therapeutic target and seems to be involved in b-cell destruction in

models of diabetes, we sought to determine if the state of NF-kB

activation would influence the outcome of islet transplantation.

The in vivo activity of NF-kB is tightly regulated by an inhibitory

protein, IkBa [25] and an activating kinase, IKKb [26]. Once

proinflammatory stimuli have activated IKKb, it phosphorylates

IkBa, which is targeted for ubiquitination and proteasomal
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degradation. The liberated NF-kB translocates to the cell nucleus

and drives transcription. To study the regulation of b-cell function

by NF-kB, transgenic mice expressing a dominant active IKKb to

activate NF-kB (bIKK) or a non-degradable form of IkBa to

prevent NF-kB activation (bISR) under control of the rat insulin

promoter (RIP) were generated. In addition to these genetic

approaches, NF-kB activity was modulated both in vivo and in vitro

using salicylates [27]. Salicylate inhibits NF-kB, and forms of

salicylate including salsalate are being investigated as a potential

new therapeutic modality in patients with diabetes [27–30].

Methods

Ethics
The Joslin Animal Care Committee approved all animal

experiments.

Establishing transgenic mice
bIKK and bISR mice were created as described previously for

both skeletal muscle (MIKK, MISR) and liver (LISR, LIKK)

specific expression of dominant active IKKb (S177/181E) and a

non-degradable form of IkBa (S32/36A; super repressor),

respectively [31,32]. To produce bIKK and bISR mice, IKKb
(S177/181E) and IkBa (S32/36A), respectively, were expressed

selectively in b-cells using the rat insulin 2 promoter. N-terminal

FLAG or His tag sequences were included in exon 2 of a b-globin

splicing cassette (Figure 1). The DNA fragments were released by

Pme1 enzyme digestion and microinjected into the pronuclei of

C57BL/6 oocytes, which were then implanted into pseudopreg-

nant female mice in the Joslin Transgenic Mouse Facility. Three

founders for bIKK and two for bISR were identified by tail DNA

genotyping (Figure 2). These mice were created using C57BL/6

mice, and are thus 100% C57BL/6 background.

Visualization of NF-kB in dispersed cells
NF-kB activation was assessed by immunocytochemistry. Cells

in isolated islets from mice 8–12 weeks of age were dispersed using

1 mg/ml trypsin in Ca2+ and Mg2+ free Hanks’ solution at 37uC
for 3 min as described previously [33] washed in PBS and

centrifuged onto glass slides. The cellular localization of NF-kB

was examined by immunofluoresence as described previously [34]

using rabbit anti nuclear p50 (1:100 dilution, Santa Cruz, Santa

Cruz, CA) and guinea-pig anti-human insulin (1:100 dilution,

DakoCytomation, Carpinteria, CA). Secondary antibodies Alexa-

Fluor 488 goat anti guinea-pig IgG (Molecular Probes, Eugene,

OR) and CY3 conjugated donkey anti-rabbit (Jackson Immunor-

esearch Laboratories, West Grove, PA) were used as a 1:200

dilution and nuclei were detected using DAPI (Sigma) Slides were

visualized using a Nikon Eclipse 90I.

Visualization of NF-kB in formalin fixed pancreases and
grafts

Pancreases or grafts were fixed in 4% paraformaldehyde and

embedded in paraffin. Sections were stained for NF-kB using a

p65 antibody (Abcam, Cambridge, MA). Briefly, slides were

hydrated and triton x was applied to permeabilise the membranes.

Antigen retrieval was carried out using citric acid and a pressure

cooker. Slides were blocked by avidin and biotin prior to H2O2

quenching. Donkey serum (1:50) was added for 30 min prior to

the antibody, which was added overnight at 4uC. Tyramide

amplification was carried out prior to the addition of the

secondary antibody (Donkey anti-rabbit Alexoflour, 1:400) for

1 hour.

Glucose tolerance tests (GTTs) with bIKK and bISR mice
GTTs were performed on 8–12 wk old bIKK and bISR mice,

as well as age and weight matched wild-type siblings. After an

overnight fast, mice were injected i.p. with 2 g/kg glucose. Blood

glucose levels were measured prior to the injection and at 15, 30,

60, 90 and 120 min using a glucose meter (Accu-Check;

Boehringer-Mannheim Biochemicals, Indianapolis, IN) with blood

obtained from a snipped tail.

Mice receiving islet transplants
Male C57BL/6AF1 mice (Jackson Laboratories, Bar Harbor,

ME) age 6-10 weeks were used as donors and recipients of islet

grafts. Transgenic bIKK or bISR mice were also used as

transplant donors. Recipient animals were made diabetic with a

single i.p. injection of streptozotocin (Sigma, St Louis, MO)

180 mg/kg body wt, freshly dissolved in citrate buffer (pH = 4.5).

Only those mice with blood glucose levels greater than 20 mmol/l

were used as recipients.

Islet Isolation
Islets were isolated using collagenase digestion followed by

separation with a density gradient as previously described in detail

[35]. After isolation, islets were handpicked and transplanted

immediately, or cultured for 72 h in RPMI 1640+10% FCS in the

absence or presence of 2 mmol/l salicylate.

Islet transplantation
Animals were anaesthetised using 0.02 ml/g BW Avertin [2.5%

(vol/vol) solution of 10 g 97% 2.2.2-tribromoethanol (Sigma) in

10 ml 2-methyl-2-butanol]. The left kidney was exposed through a

lumbar incision and the kidney capsule was incised. Using a

Hamilton syringe (Fisher, Pittsburg, PA) and polyethylene tubing

(Cole Parmer, Vernon Hills, IL), islets were placed under the

kidney capsule as previously described [36]. A suboptimal number

of 150 islets were used to assess the efficacy of the transplants.

Salicylate treatment of mice receiving islet transplants
Recipient male C57BL/6AF1 mice were injected with 180 mg/

kg streptozotocin eight days before transplantation. Three days

before transplantation, diabetic animals having non-fasting blood

glucose levels .20 mmol/l were randomly assigned to receive

water with or without salicylate. Mice were housed separately and

consumption of water was calculated by weighing the water bottles

every 24 h. The concentration of the salicylate was calculated

based on the previous 24 h consumption of water, giving each

animal approximately 30 mg salicylate/day. Salicylate adminis-

tration was begun 3 days before transplantation. Mice were

transplanted with 150 freshly isolated islets under the left kidney

capsule. Blood glucose levels and water consumption were

monitored daily. The concentration of salicylate in the water

was modified as blood glucose levels fell and the mice were

drinking less water. Salicylate administration was continued until

the end of the study (28 days), irrespective of whether or not the

animals were cured.

Salicylate administration to cultured islets
Islets were cultured in RPMI 1640 and 10% foetal calf serum in

petri dishes in groups of approximately 200 islets for 72 h as

described above. The media contained a salicylate concentration

of 2 mmol/l, which was changed every 24 h. For transplantation,

150 islets were handpicked and transplanted as described above.

Blood glucose levels and weights were monitored weekly and i.p.

GTTs were carried out 10 wk after transplantation in cured mice.

NF-kB and Islet Transplantation
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Insulin secretion and content of islets
To study insulin secretion in vitro, triplicate groups of ten islets

were placed in glass vials containing 250 ml Krebs-Ringer

bicarbonate buffer supplemented with 10 mmol/l HEPES (Sig-

ma-Aldrich), hereafter referred to as KRBH buffer. In addition,

the KRBH was supplemented with 2 mg/ml bovine serum

albumin (fraction V; MP Biomedicals Inc, Aurora, OH, USA)

and 1.7 mmol/l glucose or 16.7 mmol/l glucose, for the first and

second hour of incubation, respectively. Islets were either cultured

in the presence or absence of 2 mmol/l salicylate for 72 h and

then islets from each group were then split into two groups with or

without 2 mmol/l salicylate. After the secretion experiments, the

islets were pooled into groups of 30 and insulin was extracted

overnight at 4uC in acid ethanol to determine insulin content.

Insulin concentrations were determined by insulin ELISA

(Mercodia Rat Insulin ELISA; Mercodia AB, Uppsala, Sweden).

Glucose oxidation measurements
Islet glucose oxidation rates were determined with a previously

described method [37]. Triplicate groups of ten islets were

incubated in glass vials containing 100 ml Krebs-Ringer bicarbon-

ate buffer supplemented with 10 mmol/l HEPES (Sigma-Aldrich),

hereafter referred to as KRBH buffer. The KRBH was

supplemented with D-[U-14C] glucose (0.3 mCi/mmol/l, Amer-

sham, UK) and non-radioactive D-glucose to give final glucose

concentrations of 1.7 and 16.7 mmol/l. The 14CO2 formed by cell

metabolism was entrapped in hyamine and measured by liquid

scintillation counting.

Viability of islets
The viability of islets was measured using propidium iodide and

Hoechst staining. Five isolated islets were analysed from each

mouse with an average of 361620 cells counted in each islet and

an average of 18096152 cells counted per animal. Islets from five

bIKK and five wild-type mice were analysed in a blind fashion.

Mice between 16 and 24 wk of age were matched with siblings. A

mixture of 2 mg/ml propidium iodide (Sigma) and 0.5 mg/ml

bisbenzimide (Hoechst 33258, Sigma) was added to the islets,

which were incubated at 37uC for 15 min, then washed with PBS

and put on a coverslip. Images were taken using a Zeiss Axiocam

camera on a fluorescent microscope (Leica, Leitz DMRB) with a

UV-2B filter and Openlab 3.0.4 software. The total number of

cells living (stained blue) and dead cells (stained red) were counted

using ImageJ (rsb.info.nih.gov/ij/).

In vitro evaluation of bIKK islets
In the bIKK islets, insulin release measurements, glucose

oxidation measurements and viability studies were performed in

fresh islets. In addition, bIKK islets were cultured in RPMI 1640

media supplemented with 10% FCS. Islets were cultured either in

control conditions (11.1 mmol/l glucose) or with a high glucose

concentration (33 mmol/l), or in the presence of IL-1b (2.5 U/ml)

for a period of 48 h. After this period, insulin release and content,

and glucose oxidation were measured.

Real time PCR for insulin mRNA was carried out using a

method previously described in detail [38], using the following

primers:

Figure 1. Constructs used to create bIKK and bISR mice. Dominant active IKKb (S177/181E) or a non-degradable form of IkBa (S32/36A; super
repressor) were expressed selectively in beta cells using the rat insulin 2 promoter to produce the bIKK and bISR mice, respectively. N-terminal FLAG
or His tag sequences were included in exon 2 of a b-globin splicing cassette
doi:10.1371/journal.pone.0077452.g001

Figure 2. Genotyping of founder bIKK (A) and bISR (B) mice.
doi:10.1371/journal.pone.0077452.g002

NF-kB and Islet Transplantation
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insulin forward: 59-ACAGCACCTTTGTGGTCC

insulin reverse: 59-GGACTCAGTTGCAGTAGTTC

b-actin forward:59-GCCCTGGCTCCTAGCACC

b-actin reverse: 59-CCACCAATCCACACAGAGTACTTG

Statistical analysis
Values are expressed as mean6SEM. When two groups were

compared, unpaired two-tailed Student’s t-test was used. When

more than two groups were compared an analysis of variance

(ANOVA) was used. Repeated measurement ANOVA (RM

ANOVA) was used when the same groups were tested at different

time-points. Two way ANOVA was used when more than one

variable was being considered. If the ANOVA was significant, the

Student-Newman-Keuls (SNK) post hoc test was performed.

For all comparisons, p values of less than 0.05 were considered

statistically significant. All statistics were carried out using

Sigmastat 3.1 (Systat Software, Erkrath, Germany).

Results

Characterization of NF-kB in bIKK and bISR beta cells
Using an antibody specific for nuclear p50, the activation state

of NF-kB in b-cells of bIKK and bISR mice was evaluated by

immunofluorescence. NF-kB is not present in the nucleus of

insulin containing cells isolated from wild-type mice, however,

following a 30 min treatment with 10 U/ml IL-1b, NF-kB is

nuclear localized in ,50% of insulin containing cells (pink,

Figure 3). In islet cells isolated from bISR mice, IL-1b failed to

stimulate NF-kB nuclear localization in b-cells, but did induce

nuclear localization of NF-kB in some non-b-cells. NF-kB is

constitutively nuclear in b-cells obtained from bIKK mice. These

findings confirm the predicted activation state of NF-kB in these

transgenic mice.

Glucose tolerance of bIKK and bISR mice
There were no differences in i.p. GTTs, with both female and

male bISR mice showing similar glucose clearance as wild-type

weight-matched gender-matched littermates at 12–16 weeks of age

(Figure 4, female mice). Lean bIKK male and female mice also

show similar glucose tolerance as their wild-type weight-matched

gender-matched littermates at 10–14 weeks of age (Figure 4,

female mice; males not shown).

Salicylate treatment of mice receiving islet transplants
The consumption of water during the 24 h time period prior to

islet transplantation was similar in both groups of mice

(18.761.1 ml/mouse/24 h in control mice and 18.562.1 in mice

receiving water with salicylate). When a mouse became normo-

glycaemic (non-fasting blood glucose ,11.1 mmol/l), its water

consumption dropped to 3–5 ml per 24 h. Three of 11 salicylate-

treated and 8 of 14 control mice were cured during the course of

the study. The blood glucose concentrations in mice administered

salicylate were not significantly different from control mice

(Figure 5, 2 way RM ANOVA; p = 0.153 for salicylate treatment,

p,0.001 for time passed after transplantation).

Transplantation results from islets cultured with salicylate
When islets were cultured for 72 h with salicylate and then

transplanted, the blood glucose levels of the recipient mice tended to

be lower than in mice with control islets (Figure 5, two way RM

ANOVA; p = 0.072 for salicylate treatment, p = 0.401 for time).

Twelve weeks after transplantation, diabetes was cured in 33% (4 of

12) of control mice (non-fasting blood glucose ,11.1 mmol/l). By

contrast, 64% (9 of 14) mice that had received salicylate-cultured

islets had been cured. After culturing the islets with salicylate for

72 h, insulin release rates at 16.7 mmol/l glucose were lower than

in islets cultured identically but without salicylate (Figure 6,

p = 0.035, RM ANOVA with Student-Newman-Keuls (SNK) post

hoc test). Islets exposed to salicylate only during the insulin release

experiment did not have different insulin release rates than the

control islets (p = 0.161, RM ANOVA with Student-Newman-

Keuls (SNK) post hoc test).

Transplantation of bISR and bIKK islets
Transplantation of bISR islets resulted in similar blood glucose

levels as transplantation of islets from wild-type littermates

(Figure 7). After transplantation of bIKK islets, the recipient mice

had higher blood glucose levels at 14 and 56 days compared with

mice that received islets from wild-type littermates (Figure 7). At

day 56, 64% of mice transplanted with bIKK islets remained

overtly diabetic (blood glucose .20 mmol/l) as compared to 23%

of mice transplanted with wild-type islets. In mice transplanted

with bISR islets, 37% were overtly diabetic at day 56 compared to

27% of mice transplanted with wild-type islets. When grafts were

studied for the presence of NF-kB using immunohistochemistry, it

was evident that the bIKK grafts showed a higher activation of

NF-kB (as demonstrated by its nuclear localization) whereas wild-

type grafts showed little nuclear NF-kB staining (Figure 8).

In vitro function of bIKK islets
To better understand why the bIKK islets were less effective in

reversing hyperglycaemia, we studied their function in vitro. There

were no differences in insulin release rates at 16.7 mmol/l glucose,

comparing freshly isolated bIKK vs. wild-type islets (16.963.6 vs.

16.663 ng insulin/10islets/h, respectively; p = 0.72, t-test). More-

over, glucose oxidation rates were similar for freshly isolated bIKK

and wild-type islets cultured either at 1.7 mmol/l glucose (2567

and 2964 pmol/10 islets/90 min, respectively; p = 0.74, t-test) or

16.7 mmol/l glucose (208627 and 173643 pmol/10islets/

90 min, respectively; p = 0.51, t-test). Insulin mRNA expression

was similar as well, as measured by real time PCR, in freshly

isolated bIKK islets compared with wild-type islets (705649 vs

683672 arbitrary units when normalized to actin, respectively; t-

test, p = 0.81, n = 5). However, there was a modest but significant

decrease in the viability of bIKK islets directly after isolation

compared with wild-type islets (89.860.8 vs 93.660.8%,

p = 0.0013, t-test, n = 5).

Figure 3. Translocation of NF-kB to the nucleus in islet cells
from bIKK and bISR 8–12 week old mice in the presence or
absence of 10 U/ml IL-1, using immunohistochemical detection
of the NF-kB subunit p50, by an antibody specific for nuclear
localized p50.
doi:10.1371/journal.pone.0077452.g003

NF-kB and Islet Transplantation
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After 48 h culture periods, GSIS (stimulation index of glucose

induced insulin secretion) tended to be lower for bIKK islets than

control islets, but this did not reach significance (Table 1). Culture

of islets for 48 h in the presence of 2.5 U/ml IL-1b reduced GSIS

to similar levels in bIKK and wild-type islets (Table 1). In addition,

culture of the islets in 33 mmol/l glucose for 48 h prior to the

insulin release experiment also had similar effects in both bIKK

and wild-type islets.

Figure 4. Intraperitoneal glucose tolerance tests (2 g/kg) conducted in female bISR (filled circle) vs. wt littermate control (open
circle) mice (n = 6–7) and in female bIKK (filled triangle) vs. wt littermate control (open triangle) mice (n = 4–5).
doi:10.1371/journal.pone.0077452.g004

Figure 5. Blood glucose levels in STZ diabetic male C57BL/6AF1 mice transplanted with 150 fresh islets with administration of
salicylate in the water (closed triangles) or regular water (open triangles). 2 way RM ANOVA with the factors being treatment and time;
p = 0.153 for the effect of salicylate treatment on blood glucose, p,0.001 for the effect of time on blood glucose, n = 11–14. Alternatively, STZ
diabetic male C57BL/6AF1 mice were transplanted with 150 islets, which had been cultured for 72 h with 2 mmol/l salicylate (closed circles) or
without salicylate (open circles). 2 way RM ANOVA; p = 0.072 for the effect of salicylate treatment on blood glucose, p = 0.401 for the effect of time on
blood glucose, n = 12–14.
doi:10.1371/journal.pone.0077452.g005

NF-kB and Islet Transplantation
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After culturing under control conditions (RPMI 1640 with 10%

FCS) for 48 h, wild-type islets contained 20.567.2 ng insulin/islet

and BIKK islets contained 14.363.1 ng insulin/islet (p = 0.4, t-

test, n = 5–7). After culture in 33 mmol/l glucose, there was a

tendency for the bIKK islets to contain less insulin (9.161.9 ng/

wild type islet versus 5.261.1 ng/bIKK islet, p = 0.09, n = 5–7).

After exposure to 2.5 U/ml IL-1b, insulin content of wild-type

islets was 8.161.6 ng/islet and in bIKK islets 10.562.5 ng/islet

(p = 0.5, n = 5–7).

Figure 6. Insulin secretion in islets cultured with 2 mmol/l salicylate for 72 h and/or exposed to 2 mmol/l salicylate during the
insulin release experiment (1 h at 1.7 mmol/l (black) and 1 h at 16.7 mmol/l glucose (grey)). p = 0.035, RM ANOVA with Student-
Newman-Keuls (SNK) post hoc test, n = 5 separate experiments with triplicates.
doi:10.1371/journal.pone.0077452.g006

Figure 7. Blood glucose levels after transplantation of 150 islets from bISR mice (closed circles) or bIKK mice (closed triangles) and
their respective wild-type littermates (open symbols) into STZ diabetic male C57BL/6AF1 recipients. n = 8–13. * = p,0.05, t-test vs wild-
type littermates of bIKK mice, n = 12–13.
doi:10.1371/journal.pone.0077452.g007

NF-kB and Islet Transplantation
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Discussion

The surprising finding of this study is that neither chronic

inhibition (bISR) nor activation (bIKK) of NF-kB in b-cells of

transgenic mice led to abnormal metabolic phenotypes, indicating

that in vivo b-cell function was either normal or at least

compensated. This was supported by studies of islet function in

vitro with islets from bIKK mice, in which dysfunction might have

been expected. Indeed, results of measurements of GSIS, insulin

content, insulin mRNA, and glucose oxidation did not differ from

results in control wild-type mice. In addition, when cultured islets

were exposed to IL-1b or to high glucose levels, no significant

differences in insulin content between bIKK and control islets

emerged.

Transplantation experiments were used to further challenge the

bIKK islets. In this situation, the bIKK islets did a little less well,

but it is impressive that a minimal number of 150 islets with

activated NF-kB were able to cure 36% of the mice. We can

conclude that chronic activation of NF-kB does not have a very

damaging effect on transplanted islets. It may be that chronic

activation of NF-kB in islets is different than its acute activation, or

that NF-kB activities in b cells are less important than previously

suggested.

Roles of NF-kB in islet transplantation appear to be complex.

There is even disagreement about whether NF-kB is activated by

the trauma of the isolation process; some find activation [21,39]

while others do not [40]. Given that NF-kB activation does occur,

there are questions about how damaging it is because both

proapoptotic and antiapoptotic factors can be generated [13,16].

However, it has been suggested that inhibiting NF-kB prior to and

immediately after islet isolation does improve islet transplantation

outcome [17,21]. Nonetheless, there are a variety of death

pathways that could be independent of NF-kB such as c-jun

NH2-terminal kinases (JNKs) [40] and poly(ADP-ribose) polymer-

ase [39]. In addition, there must be adaptive changes that occur

over the time period NF-kB is activated. The acute changes seen

after isolation may also be different than those produced through

activation by an inducible or constitutive transgene. In addition to

changes induced by the isolation process, more serious trauma is

inflicted during the peritransplant period such as anoxic cell death

[41]. Indeed it has been recently suggested that hypoxic conditions

can determine whether NF-kB is pro- or anti- apoptotic [14].

A question addressed by this study is whether inhibition of NF-

kB either by genetic or by pharmacological means might protect

transplanted islets. In spite of the complexities outlined above,

there was reason to think that NF-kB inhibition might protect

islets after isolation and/or during the peritransplant period. The

bISR mice were created to provide constitutive inhibition of NF-

kB. Unexpectedly, transplantation of a marginal number of bISR

islets did no better than control wild type mouse islets in a

syngeneic model. It is entirely possible that an acute intervention

might have provided protection not seen with our chronic model,

as was reported recently by Rink et al [17]. The current study does

however indicate that whatever cell death occurred in this

transplant situation was independent of NF-kB. However it should

be noted that the situation may be different in the case of

allogeneic rejection, where inhibition of NF-kB has been shown to

prolong graft survival [18,19]. Salicylate treatment provided an

opportunity to test the effects of pharmacologically interfering with

NF-kB. Salicylate is known to inhibit NF-kB and was previously

shown to have antiapoptotic effects in human islets [11].

Treatment of recipient mice by addition of salicylate to drinking

water provided no benefit, but culture of islets with salicylate prior

to transplantation provided outcomes that came close to being

significantly better (p = 0.072). Insight into the issue of acute

versus chronic activation may be provided by a paper in which

NF-kB was conditionally blocked in a transgenic model by

treatment with doxycycline for three days [16]. This was followed

by impressive protection of islets from cytokine-induced apoptosis

and treatment with multiple low-dose streptozotocin. In a

transplantation setting, it has been recently suggested that

Figure 8. NF-kB localization in bIKK and wild-type islets 98 days
after transplantation. In wild-type islets (panel A and C), the NF-kB
localization is cytoplasmic whereas in bIKK islets (panel B) the
localization is nuclear. Scale bar is 20 mm.
doi:10.1371/journal.pone.0077452.g008

Table 1. Insulin secretion from wild type (WT) and bIKK islets after culture for 48 h in 2.5 U/ml IL-1b, 33 mmol/l glucose or in
control media.

Culture conditions (48 h) Control 2.5 U/ml IL-1b 33 mmol/l glucose

Glucose concentration during incubation
(mmol/l)

1.7 16.7 1.7 16.7 1.7 16.7

WT islet insulin release (ng/10 islets/h) 2.460.6 16.565.8 5.462.2 9.262.1 12.761.0 28.065.7

bIKK islet insulin release (ng/10 islets/h)
(p value: t-test vs WT islets)

3.261.1 (p = 0.57) 13.065.8 (p = 0.69) 7.362.5 (p = 0.75) 13.762.7 (p = 0.24) 11.663.3
(p = 0.51)

22.264.8
(p = 0.46)

Stimulation index WT islets 7.762.7 2.861.3 2.360.7

Stimulation index bIKK islets
(p value: t-test vs WT islets)

4.661.4 (p = 0.31) 3.961.8 (p = 0.69) 3.161.4 (p = 0.66)

n = 5–7 separate experiments with triplicates.
doi:10.1371/journal.pone.0077452.t001

NF-kB and Islet Transplantation

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77452



conditional knock-out of NF-kB in islets prior to isolation and

culture can improve islet transplantation outcome in intraportally

implanted islets [17]. This indicates that the viability of the islets

prior to transplantation is particularly important. It is interesting to

note that in our study, wild-type mice showed little NF-kB staining

8 wk after implantation, which may explain why chronic

inhibition of NF-kB did not seem to have any beneficial effects.

In our model in which islets were pre-cultured with salicylate,

there were trends towards improved transplantation outcomes.

This indicates that inhibiting NF-kB for a short period prior to

islet transplantation may be beneficial. Interestingly, islets that had

been cultured with salicylate showed decreased GSIS but it is likely

that this effect was reversible as after implantation, 64% of the

animals with salicylate-treated islets cured. A salicylate-induced

reduction in insulin secretion could also be related to the effects of

salicylate on AMP protein kinase [42].

Beneficial effects were seen when an NF-kB inhibitor was

administered immediately prior to the intraportal administration

of islets [14], suggesting that acute inhibition has benefits. These

studies indicate that while an acute inhibition may be beneficial in

the few hours after implantation, a systemic chronic inhibition of

NF-kB may be detrimental. In agreement with our study, McCall

et al also showed that systemic administration of an NF-kB

inhibitor over a period of weeks had no beneficial effects on islet

transplantation outcome [43]. Inhibiting NF-kB systemically has

been suggested to impair angiogenesis [44] and thus revascular-

ization of the implanted islets may also be affected.

There is growing interest in the influence of NF-kB on b-cell

function. Our in vitro studies on islets with activated NF-kB

(bIKK) indicate that when evaluated for GSIS and various other

parameters, they cannot be distinguished from normal islets.

Unfortunately, because of breeding problems we were not able to

study isolated islets from mice with inhibited NF-kB (bISR), but

they had perfectly normal glucose tolerance. These results differ

from those of Norlin et al, but their model was very different in

that NF-kB activity was reduced by expression of a dominant

active mutant IkBa under the Pdx1 promoter [45], which is

turned on much earlier during b cell development. Hyperglycae-

mia seen in these mice may therefore reflect early embryonic

effects of sustained NF-kB activity on islet development. Indeed,

there was a 25% reduction in endocrine cell volume. The changes

in islet function may have nothing to do with NF-kB inhibition

because chronic hyperglycemia, even when very mild, is known to

cause the type of b-cell dysfunction found in that study [46,47].

Inhibition of insulin secretion was found with a very different

approach of acute inhibition with an inhibitor of IkBa phosphor-

ylation (Bay 11-7082) [48]. This again highlights the likely

difference between acute and chronic inhibition of NF-kB as a

potential explanation for these divergent results.

In summary, the current study draws attention to the

complexities of regarding the activation state of NF-kB and how

this activation state regulates the physiological function of b-cells.

Our findings suggest that pancreatic b-cells can adapt to both

chronic activation and inhibition of this important transcription

factor with normal or near normal b-cell function.
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