136 research outputs found

    Analysis and Visualization of Atrial Fibrillation Electrograms Using Cross-Correlation

    Get PDF
    Despite many recent studies into the behavior of the complex fractionated atrial electrograms (CFAEs) that characterize atrial fibrillation, there has been relatively little success in analyzing them to reliably identify and ablate the rotor sources of atrial fibrillation in real time. The objective of this study is to propose a new method of analyzing and displaying CFAE signals to help cardiologists identify likely rotors during ablation procedures. This method uses cross-correlation to compare the electrograms collected at individual electrodes, and calculates the time lead/lag for each electrode compared to a local reference. The results of the analysis are displayed on a 3D color map using coordinate data collected alongside the electrogram data. Atrial fibrillation CFAE data was collected from patients with one of two different types of electrode catheter, and a data set from a patient with atrial flutter was evaluated using the same methods. The cross-correlation method was confirmed to be working as designed when the atrial flutter lead/lag color map matched the one created by the cardiologists who collected the data. Several AF wave fronts were identified in the data as a lead to lag shift. By varying the length of electrogram data used through the analysis, it was determined that CFAEs have irregular timing and cannot easily be compared in large time sections versus smaller time sections. The unstable CFAE timing also led to the conclusion that nonlocal references cannot accurately correlate with the data, which may be due to the unpredictable flow of activation waves in the heart. The irregular timing of many of the electrograms points to regularity of CFAEs in an area as a potential indicator of rotor centers. Collecting the data using unipolar electrodes rather than bipolar electrodes was found to give much better results, with many instances of wave front activity found, as well as better agreement between large and small sections in some cases. With its ability to identify AF wave fronts, this method has potential as a tool to be used to locate and identify likely AF sources in real time.Master of Scienc

    A rapid enzymatic method for the isolation of defined kidney tubule fragments from mouse

    Get PDF
    The increasing number of available genetically manipulated mice makes it necessary to develop tools and techniques for examining the phenotypes of these animals. We have developed a straightforward and rapid method for the isolation of large quantities of single tubule fragments from the mouse kidney. Immunohistochemistry, electron microscopy, and fluorescence microscopy were used to evaluate the viability, functional characteristics, and morphology of proximal tubules (PT), and collecting ducts from cortex (CCD) and inner stripe of the outer medulla (ISOMCD). Tubules were isolated using a modified collagenase digestion technique, and selected under light microscopy for experimentation. Electron microscopy and trypan blue exclusion showed that a large portion of unselected proximal tubules were damaged by the digestion procedure. The selected tubules, however, all excluded trypan blue, indicating that the plasma membrane had remained intact. Immunocytochemistry on isolated CCD showed normal distribution of H+-ATPase, pendrin, and anion exchanger-1 (AE-1) staining. The pH-sensitive dye 2β€²,7β€²-bis(2-carboxylethyl)-5(6)-carboxyfluorescein (BCECF) was used to measure Na+-dependent and -independent intracellular pH (pHi) recovery rates in PT, and in single intercalated cells of CCD and ISOMCD fragments. Na+-dependent pHi-recovery was 0.144Β±0.008 (PT), 0.182Β±0.013 (CCD), and 0.112Β±0.010pH units/min. (ISOMCD). Na+-independent pHi recovery was found in all three segments (PT: 0.021Β±0.002, CCD: 0.037Β±0.002, ISOMCD: 0.033Β±0.002pH units/min) and was sensitive to concanamycin. In summary, we have developed a new technique for rapid and straightforward preparation of large quantities of defined tubule fragments from mouse kidney. Using this technique, the first measurements of plasma membrane vacuolar H+-ATPase activities in mouse PT and collecting duct were made. This technique will facilitate further characterization of kidney function in normal and genetically manipulated animal

    Identification of Functionally Distinct Na-HCO3 Co-Transporters in Colon

    Get PDF
    Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5β€²-diisothiocyanato-2-2β€²-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H+]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 Β΅M, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in pHi regulation in colonic epithelial cells

    An amino acid transporter involved in gastric acid secretion

    Get PDF
    Gastric acid secretion is regulated by a variety of stimuli, in particular histamine and acetyl choline. In addition, dietary factors such as the acute intake of a protein-rich diet and the subsequent increase in serum amino acids can stimulate gastric acid secretion only through partially characterized pathways. Recently, we described in mouse stomach parietal cells the expression of the system L heteromeric amino acid transporter comprised of the LAT2-4F2hc dimer. Here we address the potential role of the system L amino acid transporter in gastric acid secretion by parietal cells in freshly isolated rat gastric glands. RT-PCR, western blotting and immunohistochemistry confirmed the expression of 4F2-LAT2 amino acid transporters in rat parietal cells. In addition, mRNA was detected for the B0AT1, ASCT2, and ATB(0+) amino acid transporters. Intracellular pH measurements in parietal cells showed histamine-induced and omeprazole-sensitive H+-extrusion which was enhanced by about 50% in the presence of glutamine or cysteine (1mM), two substrates of system L amino acid transporters. BCH, a non-metabolizable substrate and a competitive inhibitor of system L amino acid transport, abolished the stimulation of acid secretion by glutamine or cysteine suggesting that this stimulation required the uptake of amino acids by system L. In the absence of histamine glutamine also stimulated H+-extrusion, whereas glutamate did not. Also, phenylalanine was effective in stimulating H+/K+-ATPase activity. Glutamine did not increase intracellular Ca2+ levels indicating that it did not act via the recently described amino acid modulated Ca2+-sensing receptor. These data suggest a novel role for heterodimeric amino acid transporters and may elucidate a pathway by which protein-rich diets stimulate gastric acid secretio

    The Stomach Divalent Ion-sensing Receptor SCAR Is a Modulator of Gastric Acid Secretion

    Get PDF
    Divalent cation receptors have recently been identified in a wide variety of tissues and organs, yet their exact function remains controversial. We have previously identified a member of this receptor family in the stomach and have demonstrated that it is localized to the parietal cell, the acid secretory cell of the gastric gland. The activation of acid secretion has been classically defined as being regulated by two pathways: a neuronal pathway (mediated by acetylcholine) and an endocrine pathway (mediated by gastrin and histamine). Here, we identified a novel pathway modulating gastric acid secretion through the stomach calcium-sensing receptor (SCAR) located on the basolateral membrane of gastric parietal cells. Activation of SCAR in the intact rat gastric gland by divalent cations (Ca(2+) or Mg(2+)) or by the potent stimulator gadolinium (Gd(3+)) led to an increase in the rate of acid secretion through the apical H+,K+ -ATPase. Gd(3+) was able to activate acid secretion through the omeprazole-sensitive H+,K+ -ATPase even in the absence of the classical stimulator histamine. In contrast, inhibition of SCAR by reduction of extracellular cations abolished the stimulatory effect of histamine on gastric acid secretion, providing evidence for the regulation of the proton secretory transport protein by the receptor. These studies present the first example of a member of the divalent cation receptors modulating a plasma membrane transport protein and may lead to new insights into the regulation of gastric acid secretion

    High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems

    Get PDF
    Coastal methane (CH4) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, delta C-13-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460 nM CH4) with habitat-specific seasonal and diurnal patterns. We observed (1) delta C-13-CH signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of similar to 1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that similar to 50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing >= 100 mu mol CH4 m(-2) day(-1) in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.Peer reviewe

    Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

    Get PDF
    Publisher Copyright: Β© 2023, The Author(s).Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining suchΒ CH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 – 2.9 mg CH4 mβˆ’2 dβˆ’1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that wereΒ sustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.Peer reviewe

    Toxin Mediated Diarrhea in the 21st Century: The Pathophysiology of Intestinal Ion Transport in the Course of ETEC, V. cholerae and Rotavirus Infection

    Get PDF
    An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects
    • …
    corecore