597 research outputs found

    Resource, Environment and Energy Considerations for Maine Food Security in 2050 and Beyond

    Get PDF
    This article discusses some of the expensive “externalities” produced by industrial agriculture and fishing. These include impaired watershed quality, soil degradation, pollution, reduction in biodiversity, and impacts on human health. The article also includes a discussion of transgenic crops and how these relate to sustainable agricultur

    Historical Perspectives on Resource Use in Food Systems

    Get PDF
    No one would deny that industrial agriculture and fishing have been highly productive—but at what cost? This article explores the historical development and contemporary impact of food production on the environment, availability of water and other resources, energy, food safety, and even our waistline

    Getting Out the Vote in School Bond Elections

    Get PDF
    School districts are virtually forced to resort to bond issues to obtain funds, though some critics say this method is inefficient and obsolete. Two sociologists and an educator look at Iowa bond issues to examine factors which influence voter turnout

    Synthesis and Characterisation of Metal Chalcogenide Nanocrystals

    No full text
    Nanomaterials are defined as materials which possess features with dimensions of less than 100 nm. Nanocrystals are a subclass of nanomaterials, where the absolute dimensions of individual particles are within this range. Various effects become evident at such small scales, including notably: alterations in electronic structure and magnetic behaviour; and the predominance of surface chemistry. Consequently, the synthesis of nanocrystals with tailored properties via chemical methodology has become an area of some interest. Metal chalcogenides form an important class of inorganic materials, which includes many technologically important semiconductors. Metal chalcogenides feature prominently among semiconductor nanocrystals synthesised to date, but the development of magnetic nanocrystals has focused primarily on metal, and metal oxide phases. Thus the aim of this project was the investigation and development of synthetic methodology for producing nanocrystals, focusing on the metal chalcogenides, with specific emphasis on magnetic metal chalcogenides (iron sulfides). Properties of nanocrystals and metal chalcogenides are discussed in Chapter 1. As described in Chapter 2, metal chalcogenide nanocrystals were synthesised by high temperatures solution-phase reactions, and all samples were characterised by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electron Diffraction (ED). Powder X-ray Diffraction (XRD), Scanning Quantum Interference Device magnetometry (SQUID), Thermogravimetric analysis (TGA), Ultraviolet-visible (UV-vis) absorption and fluorescent emission spectroscopy were also used extensively. CdSe nanocrystals with diameters <10 nm are noted for their size-dependent absorption and emission in the visible region. As described in Chapter 3, an established synthesis was used to produce CdSe nanocrystals in order to explore the size-dependence of the optical properties of the nanocrystals, and to explore the possibility of transferring the nanocrystals to aqueous media. As described in Chapter 4, high temperature reaction of iron salts and elemental sulfur in non-aqueous coordinating solvents was used to produce Fe1-xS and Fe3S4 nanocrystals. The factors affecting phase-selectivity, particle size and morphology were ascertained; and the magnetic properties of pure Fe1-xS, pure Fe3S4 and mixtures of Fe1-xS and Fe3S4 were investigated. As described in Chapter 5, thermal decomposition of iron salts in a coordinating solvent was used to synthesis iron metal or iron oxide intermediates, which could either be oxidised to iron oxide spinel; or sulfidised in situ to iron thiospinel (Fe3S4) nanocrystals. This approach proved to be a good source of small, monodisperse iron oxide spinel and iron thiospinel nanocrystals with the same average dimensions. The magnetic properties of the highly-researched iron oxide spinel nanocrystals were determined, and contrasted to those of the their far less investigated thioanalogues. As described in Chapter 6, metal polysulfido complexes of the type [M(N-MeIm)x]Sy/MSy(N-MeIm)x (M = Fe, Zn, Mg; N-MeIm = N-methylimidazole) were synthesised from metal powders, elemental sulfur and N-MeIm; then thermolysed in coordinating solvents to afford metal sulfide nanocrystals. Thus establishing a new general route for synthesis of metal sulfide nanocrystals from low-cost starting materials

    Investigating the role of Junctional Adhesion Molecule-C (JAM-C) in endothelial cell biology in vitro and in vivo using human and mouse models

    Get PDF
    PhDJunctional adhesion molecule C (JAM-C) is a component of endothelial cell (EC) tight junctions that has been implicated in a number of endothelial functions, such as angiogenesis and trafficking of leukocytes through the endothelium during inflammation. Work within our lab has identified that loss of JAM-C at EC junctions results in increased reverse transendothelial migration (rTEM) of neutrophils back into the circulation, a response that has been associated with the dissemination of inflammation to distant organs. Whilst the mechanism by which JAM-C is lost or redistributed away from EC junctions has begun to be elucidated, little is known about how loss of endothelial JAM-C impacts the functions of ECs. As such, this thesis aimed to investigate the effect of JAM-C deficiency on EC functions to unravel possible molecular and cellular mechanisms of mediating neutrophil rTEM. To address the effect of JAM-C deficiency on EC functions, an in vitro RNA interference (RNAi) approach was used to efficiently knock-down (KD) JAM-C in human umbilical vein ECs (HUVECs). Importantly, KD of JAM-C did not affect expression of other key EC junctional markers such as JAM-A and VE-Cadherin and cell proliferation and apoptosis were similarly unaffected. Gene expression profiling using microarrays revealed that JAM-C depleted HUVECs exhibited a pro-inflammatory phenotype under basal conditions that was characterised by increased expression of pro-inflammatory genes such as ICAM1 and IL8. Following IL-1β-induced inflammation, no difference in expression of pro-inflammatory genes was detected between control and JAM-C KD HUVECs. However, protein levels of secreted chemokines such as IL-8 were reduced in JAM-C KD HUVECs following stimulation with IL-1β. This was corroborated by in vivo studies demonstrating reduced levels of secreted chemokines in the plasma of mice where JAM-C was conditionally deleted from ECs. A novel finding of this work is the demonstration that JAM-C KD HUVECs exhibit increased autophagy under basal conditions. This might provide a potential mechanism for the reduced chemokine secretion that is observed in this system, whereby chemokines are preferentially trafficked for autophagosome-mediated degradation. Taken together, these findings indicate a multi-functional role for JAM-C in regulating EC homeostasis under basal conditions. JAM-C KD ECs respond aberrantly to inflammatory stimuli by secreting reduced chemokine levels, a consequence that could provide novel insights into the mechanisms of neutrophil rTEM under conditions of endothelial JAM-C loss.Wellcome Trus

    Gender and youth responsiveness considerations for targeting, testing and scaling suitable CSA practices and technologies: Learnings from the Climate-Smart Villages

    Get PDF
    This working paper summarizes the findings of a portfolio review conducted to explore the gender and youth responsiveness of climate-smart agriculture technologies tested across climate-smart villages. The innovative and integrative aspect of the Climate-Smart Village (CSV) approach can provide useful insights into how to decrease the gender gap in the context of climate change. The diverse settings of CSVs (across East and West Africa, South and Southeast Asia and Latin America) and long program timeline, present a unique opportunity to gather learnings for the broader agriculture research for development community and practitioners. Toward these points, this paper aims to assess how gender and youth responsiveness was integrated into the process of identifying, testing, promoting, and scaling suitable CSA practices and technologies in the context of the implementation of the CSV approach. The review found that collective action and local partner engagement has proved to be very successful in the CSVs in regards to gender outcomes. To improve the gender and youth responsiveness of CSVs, it is essential taking those considerations into account from the very beginning of the project design, as well as having a GSI expert involved

    The Influence of atmospheric oxygen content on the mechanical properties of selectively laser melted AlSi10Mg TPMS-based lattice

    Get PDF
    © 2023 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/ma16010430Selective Laser Melting (SLM) is an emerging Additive Manufacturing (AM) technique for the on-demand fabrication of metal parts. The mechanical properties of Selectively Laser Melted (SLMed) parts are sensitive to oxygen concentration within the SLM build chamber due to the formation of oxides, which may lead to various negative consequences. As such, this work explores the influence of SLM atmospheric Oxygen Content (OC) on the macroscopic mechanical properties of SLMed AlSi10Mg bulk material and Triply Periodic Minimal Surface (TPMS) lattices namely primitive, gyroid, and diamond. Standard quasi-static tensile and crushing tests were conducted to evaluate the bulk properties of AlSi10Mg and the compressive metrics of TPMS-lattices. Two oxygen concentrations of 100 ppm and 1000 were used during the SLM fabrication of the experimental specimens. The tensile test data revealed a small influence of the oxygen content on the bulk properties. The low oxygen concentration improved the elongation while slightly reduced the ultimate tensile strength and yield stress. Similarly, the influence of the oxygen content on the compressive responses of TPMS-lattices was generally limited and primarily depended on their geometrical configuration. This study elucidates the role of SLM atmospheric oxygen content on the macroscopic behaviour of SLMed AlSi10Mg parts.This research was conducted with support from Innovate UK Knowledge Transfer Partnership KTP013117 (University of Wolverhampton/AceOn), AceOn Group Ltd., the University of Wolverhampton, Linde Group, Additive Analytics Ltd. and EOS GmbH.Published onlin

    Analysis of Gene Expression in an Inbred Line of Soft-Shell Clams ( Mya arenaria

    Get PDF
    Mya arenaria is a bivalve mollusk of commercial and economic importance, currently impacted by ocean warming, acidification, and invasive species. In order to inform studies on the growth of M. arenaria, we selected and inbred a population of soft-shell clams for a fast-growth phenotype. This population displayed significantly faster growth (p<0.0001), as measured by 35.4% greater shell size. To assess the biological basis of this growth heterosis, we characterized the complete transcriptomes of six individuals and identified differentially expressed genes by RNAseq. Pathways differentially expressed included structural gene pathways. Also differentially expressed was the nucleotide-binding oligomerization domain 2 (NOD2) receptor pathway that contributes to determination of growth, immunity, apoptosis, and proliferation. NOD2 pathway members that were upregulated included a subset of isoforms of RIPK2 (mean 3.3-fold increase in expression), ERK/MAPK14 (3.8-fold), JNK/MAPK8 (4.1-fold), and NFÎşB (4.08-fold). These transcriptomes will be useful resources for both the aquaculture community and researchers with an interest in mollusks and growth heterosis
    • …
    corecore