519 research outputs found
Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators
Existing welded steel moment frames are designed to tolerate substantial yielding and plastic rotation under earthquake loads. This sacrificial design approach can lead to permanent, and often irreparable damage when interstory drifts exceed 2%. The experimental seismic performance of a 50% full-scale damage avoidance designed structural steel beam-column connection is presented. The beam-column joint region consists of a top flange-hung beam connected to the column by an angle bracket. High-force-to-volume (HF2V) devices are attached from the column to the beam to provide joint rigidity and energy dissipation as the joint opens and closes. The HF2V devices are connected either below the beam flange or concealed above the beam's lower flange. Reversed cyclic lateral load tests are conducted with drift amplitudes up to 4%. No damage is observed in the principal beam and column structural elements. The need for stiff device connections to achieve optimal device performance is demonstrated, and potential design solutions presented. Stable hysteresis and repeatable energy dissipation for a large number of cycles up to the 4% drift level is observed. It is concluded that superior and repeatable energy dissipation without damage can be achieved for every dynamic motion cycle, in contrast to conventional sacrificially designed welded moment frame connections
Stress Preconditioning of Spreading Depression in the Locust CNS
Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K+ -sensitive microelectrodes, we measured extracellular K+ concentration ([K+]o) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na+/K+ ATPase impairment, K+ injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45°C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K+ that was not linked to changes in ATP levels or total Na+/K+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin
Dual-Layer Frequency-Selective Grid Polarizers on Thin-Film Substrates for THz Applications
Dual-layer frequency-selective subwavelength grid polarizers on thin-film dielectric substrates are proposed for THz and sub-THz applications. The dual-layer grids possess enhanced (squared) polarizing efficiency at a sequence of discrete frequencies in reflection and within extended frequency bands in transmission as compared to conventional single grids
The Southern Galactic Plane Survey: The Test Region
The Southern Galactic Plane Survey (SGPS) is a project to image the HI line
emission and 1.4 GHz continuum in the fourth quadrant of the Milky Way at high
resolution using the Australia Telescope Compact Array (ATCA) and the Parkes
Radio Telescope. In this paper we describe the survey details and goals,
present lambda 21-cm continuum data, and discuss HI absorption and emission
characteristics of the SGPS Test Region (325.5 deg < l < 333.5 deg; -0.5 deg <
b < +3.5 deg). We explore the effects of massive stars on the interstellar
medium (ISM) through a study of HI shells and the HI environments of HII
regions and supernova remnants. We find an HI shell surrounding the HII region
RCW 94 which indicates that the region is embedded in a molecular cloud. We
give lower limits for the kinematic distances to SNRs G327.4+0.4 and G330.2+1.0
of 4.3 kpc and 4.9 kpc, respectively. We find evidence of interaction with the
surrounding HI for both of these remnants. We also present images of a possible
new SNR G328.6-0.0. Additionally, we have discovered two small HI shells with
no counterparts in continuum emission.Comment: 17 pages, 7 embedded EPS figures, 10 low-res jpeg figures, uses
emulateapj5.sty. Accepted for publication in the Astrophysical Journal.
Version with all full resolution figures embedded is available at
http://www.astro.umn.edu/~naomi/sgps/papers/SGPS.ps.g
Predicting Crystal Structures with Data Mining of Quantum Calculations
Predicting and characterizing the crystal structure of materials is a key
problem in materials research and development. It is typically addressed with
highly accurate quantum mechanical computations on a small set of candidate
structures, or with empirical rules that have been extracted from a large
amount of experimental information, but have limited predictive power. In this
letter, we transfer the concept of heuristic rule extraction to a large library
of ab-initio calculated information, and demonstrate that this can be developed
into a tool for crystal structure prediction.Comment: 4 pages, 3 pic
Deconstructing classical water models at interfaces and in bulk
Using concepts from perturbation and local molecular field theories of
liquids we divide the potential of the SPC/E water model into short and long
ranged parts. The short ranged parts define a minimal reference network model
that captures very well the structure of the local hydrogen bond network in
bulk water while ignoring effects of the remaining long ranged interactions.
This deconstruction can provide insight into the different roles that the local
hydrogen bond network, dispersion forces, and long ranged dipolar interactions
play in determining a variety of properties of SPC/E and related classical
models of water. Here we focus on the anomalous behavior of the internal
pressure and the temperature dependence of the density of bulk water. We
further utilize these short ranged models along with local molecular field
theory to quantify the influence of these interactions on the structure of
hydrophobic interfaces and the crossover from small to large scale hydration
behavior. The implications of our findings for theories of hydrophobicity and
possible refinements of classical water models are also discussed
Alterations of immune response of non-small lung cancer with azacytidine
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade
- …