1,578 research outputs found

    The development and implementation of electromechanical devices to study the physical properties of Sr2IrO4 and TaS3

    Get PDF
    Transition metal oxides (TMO) have proven to exhibit novel properties such as high temperature superconductivity, magnetic ordering, charge and spin density waves, metal to insulator transitions and colossal magnetoresistance. Among these are a spin-orbit coupling (SOC) induced Mott insulator Sr2IrO4. The electric transport properties of this material remain finite even at cryogenic temperatures enabling its complex electronic structure to be investigated by a scanning tunneling microscope. At T = 77 K, we observed two features which represent the Mott gap with a value of 2D ~ 615 meV. Additionally an inelastic loss feature was observed inside this gap due to a single magnon excitation at an energy of ~ 125 meV. These features are consistent with similar measurements with other probes. In addition to these features, at T = 4.2 K lower energy features appear which are believed to be due to additional magnetic ordering. Another material that exhibits a unique physical behavior is the sliding charge density wave (CDW) material TaS3. It is a quasi-one dimensional material that forms long narrow ribbon shaped crystals. It exhibits anomalies including non-ohmic conductivity, a decrease in the Young’s modulus, a decrease in the shear modulus and voltage induced changes in the crystal’s overall length. In addition, we have observed the torsional piezo-like response, voltage induced torsional strain (VITS), in TaS3 which was first discovered by Pokrovskii et. al. in 2007. Our measurements were conducted with a helical resonator. The VITS response has a huge effective piezoelectric coefficient of ~ 104 cm/V. In addition we have concluded that the VITS is a very slow response with time constants of ~ 1 s near the CDW depinning threshold, that these time constants are dependent on the CDW current, and we suggest that the VITS is due to residual twists being initially present in the crystal

    Binary Frontal Polymerization: Velocity Dependence on Initial Composition

    Get PDF
    Frontal polymerization is a mode of polymerization in which a localized zone of reaction propagates through the coupling of thermal diffusion and the Arrhenius dependence of the reaction rate. The dependence of the front propagation velocity on the initial composition has been determined in initially miscible binary systems of a free-radically cured diacrylate and an amine- or cationically cured epoxy resin. A minimum of the velocity as a function of the monomer mole fraction is observed if the two polymerizations occur independently. Excellent agreement with an analytical description was found with the diacrylate and an amine-cured epoxy but not for a diacrylate and a cationically cured one because of the effect of HCl impurities on the peroxide

    Dynamic filtering of static dipoles in magnetoencephalography

    Get PDF
    We consider the problem of estimating neural activity from measurements of the magnetic fields recorded by magnetoencephalography. We exploit the temporal structure of the problem and model the neural current as a collection of evolving current dipoles, which appear and disappear, but whose locations are constant throughout their lifetime. This fully reflects the physiological interpretation of the model. In order to conduct inference under this proposed model, it was necessary to develop an algorithm based around state-of-the-art sequential Monte Carlo methods employing carefully designed importance distributions. Previous work employed a bootstrap filter and an artificial dynamic structure where dipoles performed a random walk in space, yielding nonphysical artefacts in the reconstructions; such artefacts are not observed when using the proposed model. The algorithm is validated with simulated data, in which it provided an average localisation error which is approximately half that of the bootstrap filter. An application to complex real data derived from a somatosensory experiment is presented. Assessment of model fit via marginal likelihood showed a clear preference for the proposed model and the associated reconstructions show better localisation

    When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?

    Get PDF
    This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested

    Success With Extended-Infusion Meropenem After Recurrence of Baclofen Pump-Related Achromobacter Xylosoxidans Meningitis in an Adolescent

    Get PDF
    A 13-year-old female experienced a recurrence of baclofen pump-related central nervous system (CNS) infection caused by Achromobacter, despite absence of retained foreign material. Due to the failure of meropenem (120 mg/kg/d in divided doses every 8 hours and infused over 30 minutes) in the initial infection, the dose was infused over 4 hours during the recurrence. Meropenem is an antibiotic for which efficacy is time dependent, and 4-hour versus 30-minute infusions have been shown to prolong the time the concentration of the antibiotic exceeds the minimum inhibitory concentration (MIC) of the organism at the site of infection (T\u3eMIC). Meropenem serum concentrations were obtained and indicated that T\u3eMIC was at least 75% of the dosing interval. Our patient improved with no noted recurrences or adverse effects on the extended-infusion meropenem regimen. Utilization of extended-infusion beta-lactam dosing whenever possible in the treatment of serious infections caused by gram-negative organisms should be considered, as this dosing appears to be safe and improves the probability of achieving pharmacokinetic/pharmacodynamic goals

    Geodatabase Development to Support Hyperspectral Imagery Exploitation

    Get PDF
    Geodatabase development for coastal studies conducted by the Naval Research Laboratory (NRL) is essential to support the exploitation of hyperspectral imagery (HSI). NRL has found that the remote sensing and mapping science community benefits from coastal classifications that group coastal types based on similar features. Selected features in project geodatabases relate to significant biological and physical forces that shape the coast. The project geodatabases help researchers understand factors that are necessary for imagery post processing, especially those features having a high degree of temporal and spatial variability. NRL project geodatabases include a hierarchy of environmental factors that extend from shallow water bottom types and beach composition to inland soil and vegetation characteristics. These geodatabases developed by NRL allow researchers to compare features among coast types. The project geodatabases may also be used to enhance littoral data archives that are sparse. This paper highlights geodatabase development for recent remote sensing experiments in barrier island, coral, and mangrove coast types

    Study of Supersolidity and Shear Modulus Anomaly of 4He in a Triple Compound Oscillator

    Full text link
    The recently discovered shear modulus anomaly in solid 4He bears a strong similarity to the phenomenon of supersolidity in solid 4He and can lead to the period shift and dissipative signals in torsional oscillator experiments that are nearly identical to the classic NCRI signals observed by Kim and Chan. In the experiments described here, we attempt to isolate the effects of these two phenomena on the resonance periods of torsion oscillators. We have constructed a triple compound oscillator with distinct normal modes. We are able to demonstrate that, for this oscillator, the period shifts observed below 200 mK have their primary origin in the temperature dependence of the shear modulus of the solid 4He sample rather than the formation of a supersolid state
    • 

    corecore