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ABSTRACT OF DISSERTATION

The development and implementation of electromechanical devices to study the
physical properties of Sr2IrO4 and TaS3

Transition metal oxides (TMO) have proven to exhibit novel properties such as high
temperature superconductivity, magnetic ordering, charge and spin density waves,
metal to insulator transitions and colossal magnetoresistance. Among these are a
spin-orbit coupling (SOC) induced Mott insulator Sr2IrO4. The electric transport
properties of this material remain finite even at cryogenic temperatures enabling its
complex electronic structure to be investigated by a scanning tunneling microscope.
At T = 77 K, we observed two features which represent the Mott gap with a value of
2∆ ∼ 615 meV. Additionally an inelastic loss feature was observed inside this gap due
to a single magnon excitation at an energy of∼ 125 meV. These features are consistent
with similar measurements with other probes. In addition to these features, at T = 4.2
K lower energy features appear which are believed to be due to additional magnetic
ordering. Another material that exhibits a unique physical behavior is the sliding
charge density wave (CDW) material TaS3. It is a quasi-one dimensional material that
forms long narrow ribbon shaped crystals. It exhibits anomalies including non-ohmic
conductivity, a decrease in the Young’s modulus, a decrease in the shear modulus
and voltage induced changes in the crystal’s overall length. In addition, we have
observed the torsional piezo-like response, voltage induced torsional strain (VITS),
in TaS3 which was first discovered by Pokrovskii et. al. in 2007. Our measurements
were conducted with a helical resonator. The VITS response has a huge effective
piezoelectric coefficient of ∼ 10−4 cm/V. In addition we have concluded that the
VITS is a very slow response with time constants of ∼ 1 s near the CDW depinning
threshold, that these time constants are dependent on the CDW current, and we
suggest that the VITS is due to residual twists being initially present in the crystal.

KEYWORDS: scanning tunneling microscope, Mott insulator, spin-orbit coupling,
charge density wave, voltage induced torsional strain
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Chapter 1 Introduction

This thesis consists of three parts involving exhaustive work in two laboratories.

In the first part of this thesis (Chapters 2 − 5) I will discuss our measurements

on Sr2IrO4 with a scanning tunneling microscope. Sr2IrO4 is a 5d transition metal

oxide which was predicted to be a good metal based on a smaller on-site Coulomb

interaction compared to its 3d and 4d counterparts. Surprisingly, Sr2IrO4 has an

insulating ground state due to an appreciable spin-orbit coupling interaction. Even

with the insulating behavior, the competition between electron-electron coupling and

spin-orbit coupling results in a finite electrical resistance in typical samples even at

cryogenic temperatures. This enables the unique electronic properties of Sr2IrO4 to be

investigated with a scanning tunneling microscope (STM). In this thesis I will present

our work on the single layered Mott insulator Sr2IrO4 with an STM. We have obtained

high resolution STM images of the sample surface which include single atomic steps

and differential tunneling conductance at cryogenic temperatures. We have measured

the insulating gap through differential tunneling spectroscopy to be consistent with

similar results from optical conductivity, angle-resolved photoemission spectroscopy

and resonant inelastic x-ray (RIXS) experiments. We have also observed a single

magnon excitation comparable to the values obtained through RIXS and Raman

scattering experiments. At low temperatures, additional low energy features were

observed which suggests additional magnetic ordering is present which is consistent

with the magnetization data.

In the second part of this thesis (Chapter 6) I will discuss our work designing and

constructing a new STM. This STM is capable of translating the tip macroscopic

distances in two-dimensions while maintaining high enough resolution to observe pe-

riodic atomic structure on highly oriented pyrolytic graphite. The extra degree of
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freedom is necessary for experiments such as studying the position dependence of

electronic properties of charge density wave conductors and studing the proximity

effect near a normal metal-superconducting interface. This device is compact enough

to fit inside our cryogenic probe and is made entirely out of non-magnetic materials

for potential experiments inside a magnetic field. In this thesis I will discuss in de-

tail the design, operation and present some results illustrating the capabilities of this

newly constructed STM.

In the final part of this thesis (Chapters 7 − 11) I will discuss our results observ-

ing a torsional piezo-like response in the charge density wave conductor TaS3 called

voltage induced torsional strain (VITS). This phenomenon, which was first discovered

in 2007 by Pokrovskii et. al., consists of the ribbon shaped crystals of TaS3 twisting

when a large enough potential difference is applied along its length. This response is

associated with the depinning of the CDW from the underlying crystal lattice. We

have shown that this response has a magnitude of ∼ 0.1°, has a hysteretic depen-

dence on voltage and is very slow with relaxational time constants in excess of 1 s

near threshold. In addition, I will discuss the dependence of VITS on applied torque

and temperature and a model which we suggest is the mechanism of this unique effect.

Copyright© John Nichols, 2012.
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PART I

Determination of the electronic properties of Sr2IrO4 with a scanning

tunneling microscope
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Chapter 2 Tunneling

In 1981, Swiss scientist Heinrich Rohrer and German scientist Gerd Binnig made an

enormous impact on the field of nano science with their discovery of the scanning

tunneling microscope (STM). Their work was conducted at the IBM research facility

in Zurich, Switzerland. Their work was so influential toward the field of science that

Rohrer and Binnig were awarded the Nobel Prize in Physics in 1986, a short five years

after the instrument’s initial development. Since its discovery, the STM has proven to

be a powerful tool for studying conducting materials such as superconductors [1, 2, 3],

semi-conductors [4] and charge density wave conductors [5, 6].

An STM works by placing an atomically sharp tip microscopically close to the

sample of interest. If the tip is close enough to the sample and a voltage bias is

applied between the two, electrons will be able to jump or “tunnel” between the tip

and sample. Since the tunneling current has a dependence on physical parameters

such as tip-sample separation, bias voltage, temperature, the work function of the

materials and the density of states of the tip and sample, numerous experiments on

the atomic scale can be performed with an STM. The powerful abilities of an STM

include being able to produce topographic images with ultra high sensitivity of sample

surfaces. For many materials, atomic structure can be viewed in real space images.

It also can probe the position dependence of the electronic structure of a material.

This includes measurements of the density of states which provides the number of

states per unit energy and a measurement of the work function of the sample. In

addition, surfaces can be modified by migrating atoms from the sample to the tip

and vice versa. This enables lithography on the nano-scale to be performed.

There has been a surprising new class of materials which are insulating in nature

but retain a finite electrical resistance even at cryogenic temperatures [7, 8, 9]. Among
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these materials is Sr2IrO4, which is the prototype of magnetic insulators driven by

spin-orbit coupling. The transport properties of this material makes an STM, which

requires electrically conducting samples, the ideal tool to investigate its complex

electronic properties.

2.1 Square Barrier

Tunneling is a phenomenon in which a particle on one side of a potential barrier

actually penetrates through the barrier and appears on the other side. To give a

classical analogy, consider a baseball pitcher who is attempting to throw a pitch to

his catcher. Now suppose that a potential barrier in the form of a brick wall is

placed between the two baseball players and the pitcher begins to throw the ball.

Our intuition tells us that the baseball will just bounce off the wall no matter how

many pitches are thrown. Whether there are hundreds, thousands or even millions of

pitches thrown, we would never expect the baseball to penetrate through the brick

wall arriving in the catcher’s mitt leaving the wall intact. This intuition does not

contradict the tunneling phenomenon due to the macroscopic mass of the baseball

and thickness of the brick wall. These values will produce a probability of the baseball

tunneling through the brick wall that is effectively zero. However, if we enter into

the microscopic world by replacing the baseball and brick wall with an electron and

a small vacuum gap, the tunneling probability will be small but finite.

Now consider the one dimensional case of an electron with energy E traveling

in the +z direction incident upon a square potential barrier with a height of V0

and a width of d as described by Equation 2.1 and shown in Figure 2.1 a). Upon

interacting with the barrier, the electron will either reflect off the barrier and travel

in the −z direction or it will continue traveling in +z direction by tunneling through

the barrier illustrated in Figures 2.1 b) and c) respectively. Even though the majority

of electrons will not tunnel through the barrier, there is a finite probability that the
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electron will tunnel thorough the barrier resulting in a tunneling current governed

by Eqn. 2.2 [10]. In this equation m and ~ are the mass of the electron and reduced

Planck’s constant respectively. Even though this is an overly simplified expression for

the tunneling current, it does illustrate how the tunneling current has an exponential

dependence on the width of the potential barrier. This dependence allows for small

changes in the width of the barrier to produce large changes in the tunneling current.

For example, changing the barrier width by a factor of two will roughly change the

tunneling current by an order of magnitude. This creates a very sensitive technique

for measuring microscopic changes in distance between the two tunneling electrodes.

Therefore tunneling experiments can be used to acquire topographic images of sample

surfaces with ultra high sensitivity. This technique will be discussed in greater detail

later.

V (z) =


0 z < 0

V0 0 6 z 6 d

0 z > d

(2.1)

Itunnel ∝ e
−2d

√
2m
~2 (V0−E) (2.2)
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Figure 2.1: a) An electron traveling in the +z-direction incident upon a square poten-
tial barrier. Upon interacting with the barrier the electron will either be b) reflected
traveling in the −z-direction or c) transmitted continuing in the +z-direction.

2.2 Trapezoid Barrier

For real systems, the tunneling barrier will only be square if the work functions of the

two tunneling electrodes are identical and there is no bias voltage applied across the

tunnel junction. Regardless of the relative magnitudes of the work function of each

electrode, when there is no voltage bias across the junction, there will not only be

electrons tunneling from left to right as illustrated in Figure 2.1 c), but there will also
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Figure 2.2: When Vbias is applied it enables electrons with energy between E and
E + eVbias to tunnel across the gap. The solid regions are filled states, the striped
region is the energy window allowing electron tunneling and the arrow indicates the
direction of the tunneling electrons.

be an equal probability that electrons will tunnel from right to left. The competing

effects will result in a net tunneling current of zero. In order to obtain a net tunneling

current, it is necessary to shift the energy of one of the electrodes by eVbias, where

e is the elementary charge constant and Vbias is the bias voltage applied across the

junction. This in turn changes the shape of the potential barrier from a square to a

trapezoid as shown in Figure 2.2. This shift raises the energy of all electrons on the

left by the same amount now making it energetically favorable for electrons with an

energy between E and E+eVbias to collectively tunnel across the barrier. This energy

region is represented as stripes in Figure 2.2. It is important to note that Vbias can be

positive allowing electrons to flow from the left filling holes on the right or negative

with electrons initially on the right tunneling into holes on the left.

2.3 Density of States

The density of states of a material is an expression that relates the number of states

present in a given material per unit energy. When a tunnel junction is created with

two conducting materials, each side of the junction will have a density of states

associated with it. The resulting tunnel current will be related to the density of
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states. Since only electrons with an energy between E and E + eVbias will contribute

to the measured tunneling current, this current must depend on how many electrons

are present in the electrode with the larger energy and the number of holes available

in the other electrode in this energy region. Consider the case where one of the

tunneling electrodes is a material with an energy gap (2∆) such as a superconductor.

Inside this gap the density of states will vanish. Since there will be neither electrons

nor holes to contribute to the tunneling, there will only be a finite tunneling current

in the region |eVbias| & ∆.

2.4 Bardeen Transfer Hamiltonian

Bardeen developed this formalism to explain the results obtained from planar tunnel

junctions created by separating superconductors with a thin oxide layer [11]. The

shape of the tunnel barrier typically has a shape more complex than the square and

trapezoid barriers described above. The power of Bardeen’s formalism is it produces

an algebraic expression for the tunneling current without knowing the shape of the

barrier. Now consider a potential barrier that is an arbitrary function in the region

r1 ≤ r ≤ r2 and vanishes elsewhere as shown in Figure 2.3. Bardeen solved this

problem by separating it into two regions R1 : r ≤ r2 and R2 : r ≥ r1. Note that both

regions include the barrier. Regions 1 and 2 will be governed by the Hamiltonians

H1 and H2, respectively. Region 1 will have an eigenstate of φ0 and an eigenvalue

of E1,0 while region 2 will have an eigenstate of ψµ and an eigenvalue of E2,µ. The

Hamiltonians H1 and H2 will have the following form [11, 12, 13]:

H1 = − ~2

2m
∇2 + V1(r) ; H1φ0 = E1,0φ0 r ∈ R1 (2.3)

H2 = − ~2

2m
∇2 + V2(r) ; H2ψµ = E2,µψµ r ∈ R2 (2.4)

where V1(r) and V2(r) are the potential V (r) for the appropriate region. The solutions
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φ0 and ψµ are well understood to have an oscillatory nature outside the barrier and

undergo an exponential decay when inside as illustrated in Figure 2.3. Now the full

Hamiltonian (H) will be:

H = H1 +H2 +HT (2.5)

where the first two terms H1 and H2 are known and described above. However the

third term HT is the Bardeen Transfer Hamiltonian and is not known. Therefore it

is assumed that the width of the barrier is relatively large allowing for the following

approximation:

H ∼ H ′ =

 H1 r ∈ R1

H2 r ∈ R2

(2.6)

To illustrate the validity of this assumption, the wave functions φ0 and ψµ were

extended into the regions where they are not valid in Figure 2.3. In these regions the

two wave functions are approximately zero minimizing their contribution to the total

Hamiltonian.

Using time-dependent pertubation theory the total wave function will be.

Ψ(r, t) = a0(t)φ0(r)e−iE1,0t/~ +
∑
µ

bµ(t)ψµ(r)e−iE2,µt/~ (2.7)

Fermi’s Golden Rule can be implemented in order to calculate the probability of

an electron tunneling through the barrier.

P =
2π

~
∑
µ

|M |2δ(E2,µ − E1,0) (2.8)

where the transition or tunneling probability matrix (M) is:
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Figure 2.3: An arbitrary potential barrier (V(r)) with wave functions for H1 and H2

represented as solid and dotted lines respectively.

M = < ψµ|H2 +HT |φ0 > (2.9)

= < ψµ|H −H1|φ0 > (2.10)

=

∫ ∞
−∞

ψ∗µ(H −H1)φ0dV (2.11)

≈
∫ ∞
−∞

ψ∗µ(H ′ −H1)φ0dV (2.12)

=

∫
R2

ψ∗µ(H ′ −H1)φ0dV (2.13)

In the region R2, H ′ − H2 = 0 allowing for M to be expressed symmetrically as

follows:

M =

∫
R2

ψ∗µ(H ′ −H1)φ0 − φ0(H ′ −H2)ψ∗µdV (2.14)

=

∫
R2

ψ∗µH
′φ0 − ψ∗µH1φ0 − φ0H

′ψ∗µ + φ0H2ψ
∗
µdV (2.15)

=

∫
R2

ψ∗µH
′φ0 − ψ∗µE1,0φ0 − φ0H

′ψ∗µ + φ0E2,µψ
∗
µdV (2.16)
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Now we will as assume elastic tunneling which implies that E1,0 = E2,µ. Utilizing

Equations 2.3 and 2.6, the tunneling probability matrix will reduce to:

M =

∫
R2

ψ∗µH
′φ0 − φ0H

′ψ∗µdV

=

∫
R2

ψ∗µH2φ0 − φ0H2ψ
∗
µdV (2.17)

=

∫
R2

ψ∗µ(− ~2

2m
∇2 + V2(r))φ0 − φ0(− ~2

2m
∇2 + V2(r))ψ∗µdV (2.18)

=
~2

2m

∫
R2

φ0∇2ψ∗µ − ψ∗µ∇2φ0dV (2.19)

Recall Green’s second theorem:

∫
S

(f∇g − g∇f)dS =

∫
V

(f∇2g − g∇2f)dV (2.20)

Utilizing this, the transfer matrix will become:

M =
~2

2m

∫
SR2

(φ0∇ψ∗µ − ψ∗µ∇φ0)dS (2.21)

Inserting this into Equation 2.8 and summing over all allowed states will result in the

following expression for the tunneling current:

I =
4πe

~

∫ ∞
−∞

[f(EF − eV + ε)− f(EF + ε)]ρS(EF − eV + ε)ρT (EF + ε)|M |2dε (2.22)

where f(E) is the Fermi distribution function, ρS(E) is the density of states of the

sample and ρT (E) is the density of states of the tip. The Fermi distrubution function

will have the following form:

f(E) =
1

1 + eE/KBT
(2.23)

The tunneling current’s exponential dependence on the tip sample separation ex-

pressed in Equation 2.2 can be found in M . At zero temperature the first term of
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the integrand which is a difference of two Fermi distribution functions will be unity

for 0 < ε < eV and zero otherwise. This will simplify the expression for the tunneling

current to:

I =
4πe

~

∫ eV

0

ρS(EF − eV + ε)ρT (EF + ε)|M |2dε (2.24)

The validity of this assumption can be seen in Figure 2.4 where the term f(ε −

eV ) − f(ε) is plotted versus energy in electron volts for temperatures of 4.2 K, 77

K, 300 K and 500 K. Notice that the red curve that is simulated for a temperature

of T = 4.2 K consists of two very sharp steps at E = 0 and E = eV making this a

good assumption at this temperature. As temperature is increased, the steps become

smoothed over. This effect is commonly referred to as thermal smearing. The inset is

merely a magnification of one of the shoulders. This dependence of the tunnel current

on temperature results in a limiting energy resolution of ∆ε ≈ 3.5kBT in tunneling

experiments. Values of this limiting resolution for temperatures commonly used for

tunneling experiments can be seen in Table 2.1.

In addition, if the density of states of the tip and the tunneling probability are

assumed to be independent of the bias voltage, at zero temperature the tunneling

current will reduce to:

I ∝
∫ eV

0

ρS(EF − eV + ε)dε (2.25)

which will result in:

ρS(E) ∝ dI

dV
(2.26)

This simple expression relates the density of states of the sample directly to the

tunneling current. Assuming that M is constant may not be a great assumption.

However in most cases it varies smoothly with respect to the bias voltage allowing

features of the sample density of states to be observed in the tunneling spectroscopy.
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Figure 2.4: Plots of f(EF−eV+ε)−f(EF+ε) where E = EF+ε for several temperatures.

The expression for the derivative of the tunneling current found in Equation 2.26

is a zeroth order approximation. In order to account for the thermal effects due to

tunneling measurements obtained at finite temperature Equation 2.22 can be differ-

entiated to obtain [14]:

dI

dV
∝
∫ ∞
−∞

dε
ρS(ε)

ρS(0)

[
−∂f(ε+ eV )

∂eV

]
(2.27)

Even though this expression better represents tunneling, it is inconvenient due to its

integral dependence on the density of states. It is very challenging if not impossible to

deconvolute the density of states from this expression. Its main function is to obtain

parameters when the functional form of the DOS is known. For example, the BCS

theory for superconductivity predicts a DOS of the form |ε|/
√
ε2 −∆2. Therefore

tunneling data obtained on this class of materials can be fitted to Equation 2.27 in
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T (K) ∆ε = 3.5BT (meV)
300 90
77 23
4.2 1.3

Table 2.1: Energy resolution ∆ε for common temperatures.

order to determine the gap parameter (∆).

Copyright© John Nichols, 2012.
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Chapter 3 Scanning Tunneling Microscopy

3.1 Introduction

Typically tunneling experiments are performed through planar junctions or with a

scanning tunneling microscope (STM). Planar junctions consist of a thin insulator

sandwiched in between two electrically conducting materials. This type of barrier has

great mechanical stability but has no spatial resolution. An STM creates a tunnel

junction by placing an ultra-sharp tip atomically close (∼10 Å) to the sample of

interest. In this case, the tip can be displaced microscopic distances in three dimension

enabling microscopic images and work function measurements to be acquired. All the

tunneling results described below were obtained with a home built STM. Since the

tunnel current will depend on the density of states of both the tip and sample, it

is often convenient to choose a tip made of a material with a relatively constant

density of states. Tips made of good metals such as gold, tungsten, platinum or

platinum-iridium typically satisfy this condition.

3.2 STM Scanner

In order to achieve microscopic motion of the tip a scanner built with piezoelectric

actuators is utilized. To minimize the size of our STMs all scanners are built with

a single piezoelectric tube. The tube has nickel electrodes on both the inside and

outside. The outer electrode is broken into equal quadrants with four axial cuts. It

then has a radial cut near the center of the tube. Four of the electrodes on one side of

the radial cut are electrically shorted to each other. This section of the tube will be

responsible for fine motion of the STM tip in the z-direction. The z-axis is parallel to

the axis of symmetry of the tube and the tip of the STM. Deflections along the z-axis
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will be governed by Equation 3.1 where V is the voltage applied to the electrode, Lz

is the length between the radial cut and the end of the tube responsible for z motion,

t is the wall thickness of the tube and d31 is an element of the piezo strain matrix.

The d31 term relates the mechanical deflection of the piezoelectric elements to the

applied electric field. The values of d31 for the three types of piezoelectric materials

we use can be found in Table 3.1. The negative sign implies that a positive voltage

applied to the outer electrode will result in a contraction of the overall length of this

section of the tube. The other half of the tube will be responsible for fine motion

in the xy-plane, which will be the plane parallel to the sample surface of interest.

Whenever a voltage Vx is applied to one of the four electrodes and a voltage −Vx is

applied to the electrode opposite to it the end of the tube will be displaced along the

x-axis by an amount found in Equation 3.2, where Lxy is the length of the portion of

the tube responsible for motion in the xy-plane, OD is the outer diameter of the tube

and ID is the inner diameter of the tube. Similarly motion in the y-direction can be

achieved by applying voltages Vy and −Vy to the remaining two electrodes. With an

STM scanner with an outer diameter, wall thickness and total length of 3.18 mm,

0.51 mm and 12.7 mm respectively, independent motion in all three dimensions can

be achieved with a maximum deflection on the order of a few hundred nanometers.

∆Lz =
d31V Lz

t
(3.1)

∆Lxy =
1.8d31V L

2
xy

(OD + ID)t
(3.2)
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EBL PZT d31 (Å/V)
2 5A -1.73
3 5H -2.62
4 8 -0.95

Table 3.1: Names of piezoelectric materials used with d31 values.

3.3 Coarse Approach

Recall that in order to achieve tunneling conditions the STM tip must be ∼10 Å

from the sample and the scanner is capable of displacing the tip ∼1000 Å along

the z-axis. Therefore it is necessary to have a mechanism to get the scanner close

enough to the sample that electrons can tunnel across the barrier. This rough motion

is called the coarse approach and it is also achieved with piezoelectric actuation.

Our STMs utilize slip-stick motion based upon the design of Shuheng Pan [15, 16].

The piezoelectric materials are plates with a shear mode polarization. This implies

that the piezoelectric crystals were polarized in a direction that is orthogonal to the

direction of the applied electric field. These materials are oriented so that the shear

motion is in the z-direction. Since the amount of deflection of a piezoelectric material

is proportional to the applied electric field, the deflection of these shear mode plates

will be independent of the thickness of the plate. Therefore the amplitude of the

deflection will be proportional to the applied voltage. So in order to achieve larger

displacements for a given voltage, four plates are stacked together to create a single

walker leg. A total of six legs are necessary to achieve this orchestrated coarse motion.

An optically polished alumina oxide plate is attached to the top of each walker

leg. The coarse motion consists of these six walker legs translating a triangular

sapphire prism along the z-axis. The prism and alumina plates form a hard smooth

frictional interface necessary for slip-stick motion. Since this type of motion is coupled

to friction, it is necessary to apply an appropriate normal force. If the associated
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frictional force is too small, each leg will slip forward and backward yielding no net

motion. Similarly if the force is too large, the walker legs will clamp down on the

sapphire prism completely constricting motion. However there will be a range of

frictional forces (∼ 1− 2 N) that will allow collective motion along the z-axis [17].

Motion is obtained by rapidly applying a voltage to one of the walker legs. The

quick pulse allows the leg to easily break the static friction and move a small distance

in the opposite direction of the desired motion. This motion is relative to the sapphire

prism and the other walker legs. This is repeated one by one to each of the five

remaining walker legs. Once each leg is in this stressed state by application of the

high voltage transients, the voltage will be slowly removed from all six walker legs

simultaneously. As this occurs the sapphire prism will be displaced a small amount

in the desired direction of motion. The scanner is rigidly attached to the sapphire

prism as illustrated in Figure 3.1. Therefore displacing the prism towards the sample

will bring the STM tip closer to the sample.

Figure 3.1: Illustration of STM with 1) the Macor body, 2) one of six walker legs,
3) the sapphire prism, 4) the scanner and 5) the STM tip, 6) the beryllium copper
plate, 7) the sapphire ball and 8) the nylon screws.
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3.4 STM Assembly

The stacks are attached to a two-piece body made of Macor. Macor is a machinable

ceramic that remains dimensionaly stable in a large temperature range including room

temperature and cryogenic temperatures. These two pieces are held together with a

beryllium copper plate and a sapphire ball as shown in Figure 3.1. The thickness of

the copper plate is carefully chosen so that the spring force generated by attaching it

to the first Macor piece is applied through the sapphire ball to the other Macor piece

resulting in optimal frictional forces between the sapphire prism and the alumina

plates. This friction is sufficient for the STM to be operated in either a vertical or

horizontal configuration.

In our setup, the tunneling current is measured through the STM tip. This signal

is sent to an amplifier with a gain of 107 − 109. This large gain coupled to the

close proximity of the tip to the high voltages necessary for the scanner and walker

legs make careful shielding of the signal wire between the tip and the input of this

amplifier extremely important. The tip holder consists of two concentric stainless

steel cylinders electrically insulated from each other with Torr-Seal brand epoxy.

Electrical contact to each stainless steel cylinder is made by soldering a short 250

µm diameter wire to it with an indium doped lead-tin solder. Since the tip must

be mechanically free to move, the wire attached directly to the tip must have weak

mechanical coupling between the STM tip and the STM body. Most commercially

available coaxial wires are too stiff to satisfy this condition. This makes it necessary

to create one by using 75 µm diameter wire. This wire is used to make a helix with

inner diameter of 500 µm which will be the shielding. A similar wire is inserted into

the helix to serve as the center conductor. One end of this wire it soldered to the tip

holder with indium and the other is conventionally soldered to pins attached to the

STM body with lead/tin solder. The signal can then be run from the STM body to
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the first stage amplifier with a commercially available coaxial cable.

The amplifier is a current-to-voltage converter as illustrated in Figure 3.2. This

results in the STM tip being held at a virtual ground. In this circuit the output voltage

will be proportional to the input current as shown in Equation 3.3. If Rsense = 10

MΩ, the output of the circuit will be −10 mV
nA . The small capacitor in parallel with

the sense resistor is to eliminate transients in the output voltage. If the sense resistor

is changed, this capacitor must also be changed such that the RC time constant

remains constant. The two 0.01 µF capacitors are in place to eliminate 60 Hz noise

in the voltage supplies. Care must be taken to choose an amplifier with an input

bias current that is much smaller that the desired tunneling current. Otherwise the

tunnel current will pass through the input of the amplifier and will not be measured.

The output signal of this amplifer is then fed to another amplifier with a gain of 10

and then into our commercial STM electronics (RHK STM-100). These electronics

are automated with a computer enabling high speed acquisition of microscopic and

spectroscopic data. The sample will then be mounted in front of the STM such that

the STM tip is aligned with the sample. The bias voltage will be applied to the

sample. With this configuration, a positive bias will enable electrons in the tip to

tunnel into empty states in the sample. So once the coarse approach and the scanner

get the tip close enough to the sample so that tunneling is allowed, the tunneling

current will be measured with this circuit.

Vout = −Rsense × Itunnel (3.3)
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Figure 3.2: First stage amplifier with output Vout = −(10 MΩ)Itunnel.

3.5 Imaging

Scanning tunneling microscopy is a technique which requires the tip to be within

tunneling range. The tip will then undergo a raster scan of the sample surface allowing

microscopic images of the sample surface to be obtained. This can be accomplished

by applying a fast triangle waveform (T = 0.1 - 5 s) to the electrodes which provide

motion in the x-direction while simultaneously applying a slow triangle waveform

(T = 2 - 30 min) to the electrodes which provide motion in the y-direction, where

T is the period of the waveform. Note that it only takes half a period of the slow

triangle waveform to acquire a full image. The scan direction can be flipped by

applying the fast waveform to the y-axis electrodes and the slow waveform to the

x-axis electrodes. Applying these waveforms to the scanner, translates the tip over

an approximately rectangular area of the sample. Equation 3.2 shows that the size of

the scan area will be set by the amplitude of the applied triangle waveforms. Often

the amplitudes are identical which results in a square scan area. The commercial
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electronics allow for different types of data to be collected. The position dependence

of different combinations of the tunneling current, voltage applied to the z-piezo, the

input from external lock-in amplifier or an arbitrary analog voltage can be acquired

and presented as an image.

There are two common imaging modes that can be utilized: constant height and

constant current. In constant height mode, the apex of the tip moves in a plane

above the sample surface. As it undergoes a raster scan of this surface, the position

dependence of the tunneling current is recorded. Since the tunneling current has an

exponential dependence on tip-sample separation as seen in Equation 2.2, the regions

in the image with a larger tunneling current will be closer to the tip than regions with

a smaller current. Since STM images are given a false color grey scale, the convention

used is the light regions represent features that are closer to the viewer and the dark

regions are further from the viewer. Constant height images can typically be acquired

in ∼ 1 - 3 minutes. The main limitation of this mode is that it can only be utilized

on very smooth surfaces. For example the typical tip-sample separation is ∼ 10 Å. If

the average surface roughness of the sample is of this order or larger, the probability

of the STM tip crashing into to sample surface is high. A crash occurs when there

are strong mechanical interactions between the tip and sample. This typically makes

the STM tip more blunt and destroys that portion of the sample. Even though

there are in situ tip treatment techniques that can restore the integrity of a crashed

tip [12], they are often unsuccessful. Since crashing an STM tip into the sample is

often catastrophic to the experiment, this technique is typically not utilized until the

sample surface of interest has proven to be atomically smooth.

To allow for relatively rougher samples to be measured, the constant current

technique must be utilized. A control loop must be implemented that maintains the

tunneling current at a user defined setpoint. The output of this control loop changes

the voltage applied to the z-piezo so that the tunneling current remains equal to the
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setpoint. If the actual tunneling current is smaller than the setpoint, the feedback

loop will drive the STM tip closer to the sample until it is equivalent to the setpoint.

Similarly if the current to too large, the control loop will withdraw the tip from the

sample. Typically in this mode of operation the voltage applied to the z-piezo is

recorded and since the displacement in the z-direction is proportional to this voltage

(Equation 3.1), it will represent the surface topography. The main disadvantage

of this method is it takes a finite amount of time for the control loop to respond,

resulting in longer image acquisition times of ∼ 10 - 15 minutes.

To this point the emphasis of scanning tunneling microscopy was producing high

resolution topographical images of the sample surface. However some materials have

a position dependent local density of states (LDOS). Typically this position depen-

dence is commensurate with the underlying atomic lattice. For such materials, the

acquired STM images will not purely represent the surface topography. Recall from

Equation 2.24 that the tunneling current is a convolution of the surface topography

and the LDOS. An example of such behavior can be viewed in Figure 3.3. This im-

age represents a 0.92 × 0.92 nm2 area of a freshly cleaved surface of highly oriented

pyrolytic graphite (HOPG) obtained with an electrically etched tungsten tip. The

image is a constant current image obtained with a bias voltage of Vbias = 1.0 V and a

setpoint tunneling current of Iset = 100 pA. Each white circle in the image represents

a single carbon atom on the surface in an apparent trigonal structure. The distance

between two adjacent dots in the image is 2.56 Å. However the crystal structure of

HOPG has been reported to be a layered honeycomb lattice with a lattice spacing of

1.42 Å [18]. A honeycomb lattice has a hexagonal shape with no atoms in the center

of each hexagon. A single yellow hexagonal cell with the appropriate spacing is placed

in Figure 3.3. Notice that three points of the hexagon align with the structure of the

image while the remaining corners do not. The reason for this behavior is due to the

bulk crystal structure which consists of identical layers of carbon atoms in a honey-
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Figure 3.3: Constant current image with atomic resolution of HOPG surface obtained
with Vbias = 1.0 V and Iset = 100 pA. The yellow hexagon displays a single honeycomb
cell of its crystal structure.

comb lattice. Adjacent layers are staggered such that half the atoms on the surface

have a carbon atom from the second layer directly underneath it and the remaining

surface atoms do not. This causes the electron density to be much larger near the

atoms with an adjacent atom from the second layer. Therefore the periodic atomic

structure observed in Figure 3.3 is better described as the position dependence of the

density of states rather than the topography.

3.6 Spectroscopy

One of the most powerful features of an STM is its ability to directly probe the

electronic properties of a material. This type of measurement is more specifically
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referred to as scanning tunneling spectroscopy (STS). Even though it is impossible

to acquire STM images that are independent of the LDOS, it is possible to acquire

spectroscopic data that is independent of tip-sample separation. Equation 2.26 shows

to a zeroth order approximation that the LDOS of the sample in an STM experiment

will be proportional to the voltage derivative of the tunneling current (dI/dV). This

term is commonly referred to as the differential tunneling conductance and can be

obtained by sweeping the bias voltage through some voltage window. As the bias

voltage is swept, the corresponding tunneling current will also be recorded. The

differential conductance can be obtained either by numerical differentiation afterwards

or simultaneously through modulation techniques. Typically the latter is used because

it generally has a better signal to noise ratio and no data processing is necessary

to acquire it. For this method, a small ac-voltage (δV � Vbias) is summed with

the bias voltage (Vbias → Vbias + δV). This modulation in the bias voltage will in

turn modulate the tunneling current by δI. By the mathematical definition of the

derivative and Equation 2.26 the LDOS of the sample can be found by keeping the

independent variable δV constant and measuring the amplitude of δI with a lock-

in amplifier. Therefore, Equations 3.4 and 3.5 show that the output of the lock-in

amplifier (δI) will be proportional to the LDOS of the sample. The lock-in amplifier

used is a Model SR830 from Stanford Research Systems.

δI

δV
=

dI

dV
= ρS(E) (3.4)

ρS(E) ∝ δI (3.5)

To help illustrate how the tunneling current depends on the density of states,

consider Figure 3.4. In it there is an arbitrary sample LDOS with a small gap near

the Fermi energy and a constant tip DOS for three different bias voltages. The shaded

regions represent filled states in the system. The picture on the left has Vbias = 0.
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Figure 3.4: Three illustrations of the flow of electrons between tip and sample with
arbitrary sample LDOS and constant tip LDOS. (left) Vbias = 0 so no electrons will
tunnel. (middle) Vbias > 0 so electrons in the tip will tunnel into empty states in the
sample. (right) Vbias < 0 so electrons in the sample will tunnel into empty states in
the tip.

This results in the tip and sample having the same Fermi energy resulting in no

collective tunneling. Assuming the gap has a full width 2∆ centered at the Fermi

energy, there will continue to be no tunneling current so long as |Vbias| < ∆. If Vbias

is increased to a positive value greater than ∆, it will become energetically favorable

for electrons in the tip to tunnel into empty states in the sample. Therefore as Vbias

increases, the number of electrons tunneling across the barrier must either increase

or remain constant. Similarly one can see in the image on the right that electrons

will flow from the sample into empty states in the tip if Vbias < −∆.

Copyright© John Nichols, 2012.
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Chapter 4 Background of Sr2IrO4

Transition metal oxides (TMOs) have proven to be incredibly interesting due to their

exotic properties such as magnetic ordering, high-TC superconductivity, charge and

spin density waves, metal-to-insulator transitions and collosal magnetoresistance. A

material that has proven to be exceptionally interesting is Sr2IrO4. It is a 5d TMO

which was expected to be metallic due a smaller on-site Coulomb interaction com-

pared to its 3d and 4d counterparts. However Sr2IrO4 and several other 5d TMOs

actually have an insulating ground state. This unexpected behavior is due to an

appreciable spin-orbit coupling (SOC) interaction and the prototype of this SOC

induced Mott insulator is the single layered magnetic insulator Sr2IrO4.

4.1 Spin-orbit Coupling

Spin-orbit coupling (SOC) is due to the interactions between an electrons spin and

the magnetic field generated from its motion. Generally the strength of the SOC

interaction scales with atomic number and the effect is often negligible in the lighter

elements [19]. SOC will have an interaction strength related to ~µ · ~B where ~µ is the

magnetic moment and ~B is the magnetic field. A consequence of SOC is it removes

degeneracy by splitting electron orbitals and is a mechanism for the fine structure

observed in the hydrogen atom [20]. For example, the n = 2 orbital of the hydrogen

atom in the absence of SOC and relativistic effects will have a three fold degeneracy of

the 2P3/2 , 2P1/2 and 2S1/2 states. However, SOC will remove this degeneracy making

the 2P3/2 state the most highly energetic and the 2P1/2 the least energetic [10]. The

effects of SOC on Sr2IrO4 is illustrated in Figure 4.4.
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Figure 4.1: Effects of octahedral crystal field splitting on the d-orbital.

4.2 Crystal Field Splitting

Crystal field splitting is a phenomenon in which the electron shells experience a large

inhomogeneous electric field due to the neighboring ions. This results in a splitting of

the orbitals. The inhomogeneity of the electric field is strongly coupled to the crystal

lattice of the material. Since Sr2IrO4 undergoes octahedral crystal field splitting,

I will focus on this geometry. The effects due to crystal fields on the d-orbital is

illustrated in Figure 4.1. The dz2 and dx2−y2 bands are closer to the neighboring

ions than the other d bands resulting in stronger interactions due to the field. This

leads to splitting of the d-orbital with these two bands forming the eg band which is

higher in energy. Conversely, the dxy, dyz and dzx bands form the t2g band which is

lower in energy. These two bands are separated by an energy of 10Dq. Assuming the

d-orbital originally had an energy of E0, the t2g and eg bands will have energies of

E0 − 0.4 · 10Dq and E0 + 0.6 · 10Dq respectively [21].

4.3 Crystal Structure

Sr2IrO4 is a member of the Ruddlesden-Popper series (Srn+1IrnO3n+1) with n = 1

making it a single layered iridate. This material has a perovskite crystal structure

similar to that of K2NiF4 [22] as illustrated in Figure 4.2. A single layer of this ma-

terial consists of three atomic layers: an IrO2 layer sandwiched between two identical

SrO layers. Each iridium atom and the six adjacent oxygen atoms form an IrO6 oc-
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tahedra. These octahedra are rotated around the c-axis by ∼ 11°. This results in a

reduced tetragonal structure (space group I41/acd). A consequence of this rotation

is the unit cell is enlarged. The lattice parameters of Sr2IrO4 measured by neutron

scattering are a = 5.498 Å and c = 25.798 Å [23].

Figure 4.2: The crystal structure of Sr2IrO4. (upper left) and (right) The Sr, Ir and
O atoms are white, green and red respectively. The IrO6 octahedra are colored blue.
(upper left) View along c-axis clearly illustrates rotation of IrO6 octahedra. (lower
left) The Sr, Ir and O atoms are grey, red and black respectively. The three layers
labeled I, II and III are the same as those labeled in Figure 5.5.

The IrO6 octahedra coupled to the strontium atoms form a single layer. The

octahedra in adjacent layers will be shifted such that the Sr in adjacent layers do not

align on top of one another. Both the Ir and Sr atoms in their respective atomic layer

from a square lattice. The iridium atoms in adjacent atomic layers will align in the

ab-plane such that they are in the center of the square grid. Also the IrO6 octahedra

in every second layer will be rotated in the opposite direction. In other words, if the
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octahedra in the first two layers are rotated by 11°, then the octahedra in the next

two layers will be rotated by -11°. Note that the distance between two adjacent layers

is c/4 ∼ 7 Å and the distance between two adjacent Sr atoms the same atomic layer

is a/2 ∼ 2.5 Å.

4.4 Electronic Structure

As one transitions from 3d to 4d and 5d transition metals oxides, the outer electrons

become more spatially extended. This results in a smaller on-site Coulomb interaction

(U) and a larger bandwidth (W). This should result in a more metallic behavior.

Consider the two material Sr2CoO4 and Sr2RhO4 which are respectively the 3d and

4d counterparts of Sr2IrO4. Sr2CoO4 is a ferromagnetic metal [24] while Sr2RhO4 is

an even better metal [25]. Since Sr2IrO4 has a similar crystal structure and a smaller

Coulomb interaction than Sr2CoO4 and Sr2RhO4, it was believed that this single

layered iridate would have a simple metallic ground state. It can be clearly seen in

Figure 4.3 that this material has an insulating ground state and remains in this state

for temperatures as high as 600 K.

As the transition is made from 3d to 5d TMOs, the Coulomb interaction decreases

as anticipated. However, the interaction strength of SOC increases to a point where

it is no longer negligible relative to U. Typical values for the on-site Coulomb inter-

action and the SOC coefficient are displayed in Table 4.1. For typical 3d TMOs, the

SOC interaction strength is over an order of magnitude smaller than U. Therefore

the effects in the ground state of 3d TMOs due to SOC are negligible. Since the

interaction strengths of U and SOC are comparable for 5d TMOs such as Sr2IrO4,

both interactions have appreciable influence on the system.

To illustrate how SOC drives this material into the insulating state consider Figure

4.4. In panel a), there is a single partially filled t2g band of a good metal whose bands

are only split due to crystal fields. Note that the higher energy eg band is empty. If a
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Figure 4.3: Temperature dependence of the electrical transport properties in Sr2IrO4

measured along the a-axis (blue) and the c-axis (red). [26]

large U is applied to this material, it will open a Mott gap in the material splitting the

valence band into a Lower Hubbard Band (LHB) and an Upper Hubbard Band (UHB)

as shown in panel b). This will result in an insulating state, however the value for U

necessary to accomplish this in Sr2IrO4 is much larger than the U of approximately

2.0 eV that is observed in this material [28]. Therefore the Coulomb interaction

cannot solely be responsible for the insulating behavior observed in Sr2IrO4. Panel c)

illustrates the metal in the presence of SOC with a negligible U. The band is split into

a Jeff,3/2 band which can hold four electrons and a more energetic Jeff,1/2 band capable

of holding two electrons. Regardless of whether a gap is actually opened, there will

be a partially filled valence band resulting in a metallic ground state. However the

coexistence of both a realistic U and SOC can be seen in panel d). Even though U

is not large enough to open a Mott gap in the full t2g band, it is large enough open

one in the Jeff,1/2 band. Therefore the Jeff,1/2 band is split into a filled LHB and an

empty UHB. The opening of this Mott gap in the Jeff,1/2 band drives this system into

the insulating state. This makes Sr2IrO4 a SOC driven Mott insulator.

The effects of crystal field splitting and SOC on the electronic bands of Sr2IrO4
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�ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5� 10�10 Torr at the Beamline 2A of the Pohang Light
Source with �h� ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy �SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field

energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically

large U � W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼�1 ¼ �ðjzxi �
ijyziÞ= ffiffiffi

2
p

and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-

mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in

Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large �SO explains why Sr2IrO4 (�SO � 0:4 eV) is insulat-
ing while Sr2RhO4 (�SO � 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in

Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
� and �X sheets and an electronlike �M sheet centered at
�, X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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Figure 4.4: a) Band structure of a simple metal. b) Mott gap generated by unrealisti-
cally large U. c) Band splitting due to only SOC results in metallic state. d) Modest
U in presence of SOC results in insulating state. [27]

3d 5d

U 5-7 eV 1-3 eV
SOC 0.01-0.1 eV 0.1-1 eV

Table 4.1: Comparison of typical values for spin-orbit coupling and Coulomb inter-
actions for 3d and 5d transition metals [29].

can be seen in Figure 4.5. Panel a) illustrates the effects of crystal field splitting

and SOC on the 5d band. Crystals fields will open a gap with a full width of 10Dq.

The two bands generated by this splitting are the t2g band and the more energetic

eg band. Since the the t2g can hold six electrons and Sr2IrO4 has only five valence

electrons, its ground state will have an empty eg band. The addition of SOC will

produce an additional splitting of the t2g band into a less energetic Jeff,3/2 band and

a more energetic Jeff,1/2 band. Panel b) displays the effects of SOC and the Coulomb

interaction on the t2g band. Notice how the addition of a realistic value of U will

provide an additional splitting of the Jeff,1/2 band opening a Mott gap with a full

width of 2∆. The two bands split from the Jeff,1/2 state are the LHB and the more
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energetic UHB. The filling of the five valence electrons in the ground state of this

system is shown in Figure 4.5 b). Since the Mott gap is opened in the Jeff,1/2 band

which can hold two electrons both the LHB and the UHB only have the capacity

for one electron. Therefore the LHB will be full with the UHB empty producing an

insulating ground state. This explains how Sr2IrO4 can be insulating with an odd

number of valence electrons. Note that the Fermi energy will be located between

the LHB and the UHB and that the tunneling spectrum presented in Chapter 5 are

relative to this energy.

Figure 4.5: a) The effects of the 5d band in Sr2IrO4 due to crystal field splitting and
spin-orbit coupling. b) The effects due to SOC and the on-site Coulomb interaction
on the t2g band.

Spin-orbit coupling inducing an insulating ground state in Sr2IrO4 has been the-

oretically confirmed by band structure calculations within the local-density approxi-

mation (LDA) of density functional theory [27]. The results of these calculations are

34



shown in Figure 4.6. Each panel displays the LDA calculations with appropriate in-

teractions on the right with the Fermi surface on the left. Panel a) displays the LDA

calculations with no additional interactions which results in a metallic state. Simi-

larly, panel b) which accounts for only SOC and panel d) which accounts for only U

also result in a metallic state. However the LDA calculation which accounts for both

SOC and U has a gap open near the Fermi energy creating an insulating state. Even

though the gap from this calculation is smaller than measured with experimental

probes, the main point is that a combination of U and SOC in this system can yield

an insulating state. Note that the figure on the left of panel c) is the topology of the

valence band maximum rather than the Fermi surface.
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�ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5� 10�10 Torr at the Beamline 2A of the Pohang Light
Source with �h� ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy �SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field

energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically

large U � W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼�1 ¼ �ðjzxi �
ijyziÞ= ffiffiffi

2
p

and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-

mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in

Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large �SO explains why Sr2IrO4 (�SO � 0:4 eV) is insulat-
ing while Sr2RhO4 (�SO � 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in

Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
� and �X sheets and an electronlike �M sheet centered at
�, X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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Figure 4.6: The right panel are LDA band structure calculations considering a) no
SOC or U b) only SOC c) both SOC and U d) only U. The left panel represents the
Fermi surface except for c) which shows the topology of the valence band maxima.
[27]

4.5 Magnetic Ordering

This system was originally shown to be a weak ferromagnetic insulator with a critical

temperature of TN = 240 K with the easy axis being the a-axis, which is the axis

with a larger magnetic response [30]. This ordering can be seen in the temperature
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dependence of the magnetization presented in Figure 4.7 obtained with a field of 0.1

T [31]. This weak moment was later shown by B. J. Kim et. al. (Reference [32])

through resonant x-ray scattering experiments to be due to canted antiferromagnetic

ordering. The ordering of the moments of the Jeff,1/2 state can be seen as red arrows

in Figure 4.8. In this figure the view is along the c-axis and all four unique layers

necessary to construct a unit cell are illustrated. The blue squares represent the IrO6

octahedra and the green squares are for horizontal alignment. The individual and

net moments are represented by red and blue arrows, respectively. The individual

moments align in the ab-plane with the IrO6 octahedra. Since these octahedra are

rotated about the c-axis by ∼11°, the moments are rotated by the same amount,

creating the canted antiferromagnetic ordering. Note that for fields larger than Hc ≈

0.2 T there is a realignment of the these moments. This behavior is consistent the

field dependence of the magnetization where there is saturation for fields larger than

0.5 T and anomalies in the hysteresis loops at roughly 0.2 T. In addition to this,

other anomalies appear in the temperature dependent magnetization at TM1 ∼ 100

K and TM2 ∼ 25 K. These features are likely due to additional magnetic ordering in

Sr2IrO4.
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Resistivity ρ(T,H) and magnetization M(T,H) were measured
using a Quantum Design (QD) 7T superconduction quantum
interference device (SQUID) magnetometer and a QD 14T
physical property measurement system, respectively.

This study captures a few critical magnetic features of
Sr2IrO4 that need to be addressed first. While both the a-axis
Ma(T) and the c-axis Mc(T) expectedly show ferromagnetic
(FM) order below TC = 240 K and a positive Curie-Weiss
temperature θCW = +236 K, and confirm the FM exchange
coupling at high T,5,7,14–17 a close examination of the low-field
M(T) reveals two additional anomalies at TM 1≈100 K and
TM 2≈25 K in Ma(T) and Mc(T) [see Fig. 1(a)]. Our previous
ac magnetic susceptibility also exhibits a peak near TM 1 as
well as a frequency dependence that is indicative of magnetic
frustration.5 Indeed, a recent muon-spin rotation (μSR) study
of Sr2IrO4 reports two structurally equivalent muon sites
that experience increasingly distinct local magnetic fields
for T<100 K, which subsequently lock in below 20 K.22

It becomes clear that the magnetic structure varies with T,
resulting in three well-defined temperature regions I, II, and

FIG. 1. (Color online) The field-cooled magnetization for the a
axis and the c axis, Ma and Mc, as a function of (a) temperature
at μoH = 0.1 T, and (b) magnetic field at T = 1.7 and 100 K. (c)
The magnetic anisotropy Ma/Mc as a function of temperature. (d)
The resistivity for the a-axis ln ρa as a function of 1/T. Inset in (a):
Enlarged low-T Mc. Note that the data in (a) and (d) define regions I,
II, and III.

III [Fig. 1(a)], which exhibit distinct physical properties, as
discussed below. Moreover, Ma(T) decreases rapidly below
TM 1 and TM 2, but Mc(T) rises below 50 K and more sharply
below TM 2 as T decreases [see the Fig. 1(a) inset]. The
different T dependences of Ma(T) and Mc(T) signal an
evolving magnetic structure where the spins may no longer
lie within the basal plane below TM 1. This spin reorientation
apparently simultaneously weakens Ma but enhances Mc,
thereby reducing the magnetic anisotropy Ma/Mc, which
decreases from 2.2 at 100 K to 1.5 at 1.7 K [see Figs. 1(b)
and 1(c)].

The electrical resistivity for the a-axis ρa(T) follows an
activation law ρa(T)∼exp(�/2kBT ) (where � is the energy
gap and KB is Boltzmann’s constant), and exhibits three
distinct values of � in regions that closely correspond to
regions I, II, and III defined above, as shown in Fig. 1(d).
It is noteworthy that � in region III is quite close to the
optically measured gap (∼0.1 eV);1 and it further narrows with
decreasing T [Fig. 1(d)] and, unexpectedly, with the application
of a modest magnetic field of a few Tesla (not shown).

Indeed, the transport properties are coupled to H in such a
peculiar fashion that, to the best of our knowledge, no current
models can describe the observed magnetoresistivity shown
in Figs. 2 and 3. We focus on a representative temperature T
= 35 K that is within region II. For the H‖a axis, both the
a-axis resistivity ρa(H‖a) [Fig. 2(b)] and the c-axis resistivity
ρc(H‖a) [Fig. 2(c)] exhibit an abrupt drop by ∼60% near μoH

= 0.3 T, where a metamagnetic transition occurs, suggesting
a spin reorientation, consistent with early studies.5,16 These
data partially track the field dependences of Ma(H) and Mc(H)
shown in Fig. 2(a), suggesting a reduction of spin scattering;23

but given the ordered moment ms<0.07μB /Ir, the reduction of
spin scattering alone certainly cannot account for such a drastic
reduction in ρ(H). Even more strikingly, for the H‖c axis, both
ρa(H‖c) and ρc(H‖c) exhibit multiple anomalies at μoH = 2
and 3 T, which leads to a large overall resistivity reduction of
more than 50%; however, no anomalies corresponding to these
transitions in Ma(H) and Mc(H) are discerned. (In addition,
dM/dH shows no slope change near μoH = 2 and 3 T.)
Such behavior is clearly not due to the Lorenz force because
ρc(H‖c) exhibits the same behavior in a configuration where
both the current and H are parallel to the c axis [Fig. 2(c)]; the
conspicuous lack of the correlation between ρ and M is, to the
best of our knowledge, apparently not endorsed by any existing
models describing magnetoresistivity observed in other known
materials.

An essential contributor to conventional magnetoresistance
is spin-dependent scattering; negative magnetoresistance can
be a result of the reduction of spin scattering due to spin
alignment with increasing magnetic field. The data in Fig. 2
therefore raise a fundamental question: Why does the resistiv-
ity sensitively depend on the orientation of magnetic field H
but shows no direct relevance to the measured magnetization
when H is parallel to the c-axis? While we are not aware of
any conclusive answers to the question, one scenario may be
qualitatively relevant.

This scenario is based on the following understanding
established in this and in previous work on Sr2IrO4: (1) In
the case of strong spin-orbit interaction, the lattice distortion,
or specifically, the Ir1-O2-Ir1 bond angle θ , dictates the low-

100402-2

Figure 4.7: Temperature dependence of the magnitization in Sr2IrO4 along the a-
axis (red) and c-axis (blue), where TC = TN = 240 K. (Inset) Low temperature
magnetization along the c-axis. [31].
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interest, and has become a powerful tool for
investigating ordering phenomena (10, 11). So
far, the emphasis has been seen only in the
amplification of the signal. However, the RXS
signal contains important information about the
phase of the wave function for valence electrons,
because RXS results from quantum interference
between different scattering paths via intermedi-
ate states of a single site. The RXS process is
described by the second-order process of electron-
photon coupling perturbation, as schematically
shown in Fig. 1, and its scattering amplitude fab
from a single site is expressed under dipole ap-
proximation by

fab ¼ ∑
m

mew3
im

w
〈ijRbjm〉 〈mjRaji〉
ℏw − ℏwim þ iG=2

ð2Þ

In this process, a photon with energy (ℏ)w is
scattered by being virtually absorbed and emitted
with polarizations a and b, respectively; and in the
course of the process, an electron of mass me

makes dipole transitions through position oper-
ators Ra and Rb from and to the initial state i, via
all possible intermediate states m, collecting the
phase factors associated with the intermediate
states, weighted by some factors involving energy
differences between the initial and intermediate
states (ℏ)wim and the lifetime broadening energy
G. The interference between various scattering
paths is directly reflected in the scattering inten-
sities of the photon, and in this way the valence
electronic states can be detected with phase sen-

sitivity. This process can be contrasted with that in
x-ray absorption spectroscopy (XAS), which is a
first-order process and measures only the ampli-
tudes of the individual paths, or transition
probabilities to various valence states.

We have applied this technique to explore
unconventional electronic states produced by the
strong SOC in Sr2IrO4. Sr2IrO4 is an ideal sys-
tem in which to fully use this technique. The mag-
netic Bragg diffraction in magnetically ordered
Sr2IrO4 comes essentially from scattering by Ir
t2g electrons, to which RXS using the L edge
(2p→5d) can be applied to examine the elec-
tronic states. The wavelength at the L edge of 5d
Ir is as short as ~1 Å, in marked contrast to >10 Å
for 3d elements. This short wavelengthmakes the
detection of RXS signals much easier than in 3d
TMOs, because there exists essentially no con-
straint from the wavelength in detecting the mag-
netic Bragg signal. Moreover, the low-spin 5d5

configuration, a one-hole state, greatly reduces
the number of intermediate states and makes the
calculation of scattering matrix elements tracta-
ble. The excitation to the t2g state completely fills
the manifold, and the remaining degrees of free-
dom reside only in the 2p core holes. Because the
intermediate states are all degenerate in this case,
the denominator factors involving energies and
lifetimes of the intermediate states in Eq. 2 can
drop out. A careful analysis of the scattering
intensity can show that the wave function given
by Eq. 1 represents the ground state in Sr2IrO4

(4).

Figure 2A shows the resonance enhancement
of the magnetic reflection (1 0 22) at the L edge
of a Sr2IrO4 single crystal (4), overlaid with XAS
spectra to show the resonant edges. Whereas there
is a huge enhancement of the magnetic reflection
by a factor of ~102 at the L3 edge, the resonance
at L2 is small, showing less than 1% of the
intensity at L3. The constructive interference at
L3 gives a large signal that allows the study of
magnetic structure, whereas the destructive inter-
ference at the L2 edge hardly contributes to the
resonant enhancement.

To find out the necessary conditions for the
hole state leading to the destructive interference
at the L2 edge, we calculate the scattering ampli-
tudes. Themost general wave function for the hole
state in the t2g manifold involves six basis states,
which can be reduced by block-diagonalizing the
spin-orbit Hamiltonian as

c1jxy,þs〉þ c2jyz,−s〉þ c3jzx,−s〉 ð3Þ

With its time-reversed pair, they fully span the
t2g subspace. We neglect higher-order correc-
tions such as small residual coupling between
t2g and eg manifolds. In the limit of the
tetragonal crystal field [Q ≡ E(dxy) – E(dyz,zx)]
due to the elongation of octahedra much larger
than SOC (lSO) (that is, Q >> lSO), the ground
state will approach c1 = 1 and c2 = c3 = 0 and
become a S = 1/2 Mott insulator, whereas in the
other limit of strong SOC, Q << lSO, ci's will all
be equal in magnitude, with c1, c2 pure real and c3
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Fig. 3. Magnetic ordering pattern of Sr2IrO4. (A) Layered crystal structure of Sr2IrO4,
consisting of a tetragonal unit cell (space group I41/acd) with lattice parameters a ≈ 5.5Å and
c ≈ 26Å (4). The blue, red, and purple circles represent Ir, O, and Sr atoms, respectively. (B)
Canted antiferromagnetic ordering pattern of Jeff = 1/2 moments (arrows) within IrO2 planes
and their stacking pattern along the c axis in zero field and in the weakly ferromagnetic state,
determined from the x-ray data shown in (C) to (E) (4). (C and D) L-scan profile of magnetic
x-ray diffraction (l = 1.1Å) along the (1 0 L) and (0 1 L) direction (C) and the (0 0 L) direction
(D) at 10 K in zero field. The huge fundamental Bragg peak at (0 0 16) and its background
were removed in (D). r.l.u., reciprocal lattice unit. (E) L-scan of magnetic x-ray diffraction (l =
1.1Å) along the (1 0 L) direction at 10 K in zero field and in the in-plane magnetic field of
≈0.3 T parallel to the plane. (F) The temperature dependence of the intensity of the magnetic
(1 0 19) peak (red circles) in the in-plane magnetic field H ≈ 0.3 T. The temperature-
dependent magnetization in the in-plane field of 0.5 T is shown by the solid line.
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Figure 4.8: Illustration of Jeff,1/2 moment alignment in four layers of the unit cell for
T < TN with H = 0 (left) and H > HC = 0.2 T (right) [32].
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4.6 Determination of Mott gap in Sr2IrO4

Energy gaps that appear in different materials can be observed and measured through

various probes. The insulating gap in Sr2IrO4 was first observed through optical

conductivity experiments [33]. There is a peak labeled α in Ref. [33] at roughly 500

meV which is due to electron excitations from the LHB to the UHB. The size of the

gap is interpreted to be the onset energy associated with this absorption peak. Thus

the gap measured through optical conductivity is 2∆OC ≈ 400 meV. The Mott gap has

also been observed through resonant inelastic x-ray scattering (RIXS) measurements

[34]. In RIXS experiments, the photons incident to the sample of interest have an

energy carefully chosen to be at an atomic resonance of the sample. This results in

a much larger cross section compared to inelastic x-ray scattering. The gap observed

in RIXS was shown to be 2∆RIXS ≈ 400 meV which is consistent with the result

from optical conductivity. It is important to note that both these measurements

likely have an appreciable but unreported uncertainty associated with these values.

The energy gap has also been observed in angle resolved photoemission spectroscopy

(ARPES) measurements [35]. ARPES experiments measure the energy and trajectory

of electrons ejected from a sample of interest due to incident light striking it. This

can be used to experimentally produce band structure and the Fermi surface similar

to the theoretical calculations presented in Figure 4.6. The Mott gap measured by

ARPES techniques is 2∆ARPES ≈ 580 meV.

4.7 Magnon excitations in Sr2IrO4

A phonon is a collective excitation of the positions of atoms in a solid. For example, if

the atoms in some solid are collectively oscillating, this motion constitutes a phonon.

A magnon is similar to a phonon except it is a collective excitation of the spin

orientation rather than lattice vibrations. In other words a magnon will be present
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if there is a collective modulation of the electron spin direction in a material. A

magnon is also the quantized unit of energy associated with the spin waves [36].

Magnons have been observed in Sr2IrO4 through Raman scattering [37] and RIXS

[34] experiments. The Raman scattering spectrum had a peak that vanished with

increasing temperature at an energy of 230 meV. This peak is attributed to a double

magnon excitation. Therefore a single magnon should occur at half this value 115

meV. In addition, a single magnon at an energy of 120 meV has been observed through

RIXS measurements which is consistent with the result from Raman scattering.

4.8 Mott Insulator

In 1937 a new class of TMOs was discovered that have an insulating nature but

were predicted to metallic by band theory [39]. These materials include MnO, CoO

Mn3O4, Fe2O3, CuO and NiO. Later in the same year it was predicted that this

insulating ground state was due to interactions between electrons which was ignored

in the band theory model [40]. Roughly a decade later it shown by N. F. Mott

that for NiO in particular the insulating behavior was due to interactions between

electrons and in general the electrical transport properties would be governed by the

relative strengths of the Coulomb interaction and the transfer integral (t) [41]. In

addition Mott proposed that whether a material would be electrically conducting or

insulating could be determined by a single variable: lattice spacing [36]. If the atoms

in a material are infinitely far part the material will be insulating and if they are

infinitesimally close to one another it will be metallic. Therefore there must be some

critical lattice spacing that will separate the metallic state from the insulating state.

The magnitude of this critical value can be determined from the Mott criterion, which

for 1s states in Hydrogen is [36]:

2.77n
1/3
0 < a−1

0 (4.1)
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where n0 is the electron density and a0 is the Bohr radius.

4.9 Hubbard Model

A model which successfully accounts for the transport properties in Mott insulators

was not developed until 1963 when J. Hubbard developed the Hubbard model named

in his honor [42, 43, 44]. This model accounts for the on-site Coulomb interaction

(U) and the hopping integral (t). The one band Hubbard model for a square lattice

has been shown to successfully model the electronic properties of Sr2IrO4 [28]. The

Hamiltonian of this model has the following form [45]:

H = −t
∑
〈~r,~r ′〉,σ

(
c†σ(~r )cσ(~r ′) + h.c.

)
+ U

∑
~r

n↑(~r )n↓(~r ) (4.2)

where ~r labels each lattice site, 〈~r, ~r ′〉 are nearest neighbors, σ = ↑, ↓ is the spin

index, c†σ is the annihilation operator that removes an electron from the Jeff,1/2 band,

cσ is the creation operator that places an electron in the Jeff,1/2 band and nσ(~r ) =

c†σ(~r )cσ(~r ) is the density operator. The first term is the kinetic energy term which

deals with electron hopping between nearest neighbors. The second term accounts for

the interactions between electrons. At each site there are four possible configurations

of the Jeff,1/2 band: there will be no electrons, there will be one electron with either

up-spin or down-spin or two electrons with opposite spin.

The Hubbard model is not exactly solvable for two or three dimensional systems.

Therefore to model the electronic properties of Sr2IrO4 with the Hubbard model

requires an approximation technique. Since this system has canted antiferromagnetic

ordering below its Neel temperature of TN = 240 K it is logical to use the Slater

approximation which accounts for spin fluctuations in the lattice [46]. Within this

42



limit the Hamiltonian will reduce to [47]:

HS = −t
∑
〈~r,~r ′〉,σ

(
c†σ(~r )cσ(~r ′) + h.c.

)
+

2U

3

∑
~r

〈~S(~r )〉2 − 4U

3

∑
~r

〈~S(~r )〉 · ~S(~r ) (4.3)

where the spin operator is:

~S(~r ) =
1

2
c†σ(~r )~τσ,σ′cσ(~r ′) (4.4)

where the operators ~τ are the spin-1/2 Pauli matrices.

The Slater approximation of the two-dimensional Hubbard model for a square

lattice predicts a single particle excitation gap in Sr2IrO4 with a magnitude of:

2∆S =
4

3
|~S0|U (4.5)

Note that the effective hopping energy, the Coulomb energy and the staggered

magnetic moment have been reported to be t = 0.26 eV, U = 2.0 eV and |~S0| =

0.31, respectively [28]. Therefore within this approximation the full width of the gap

is predicted to be 2∆S ≈ 0.8 eV, which is slightly larger than the value measured

through experiments. This model predicts a density of states that is suppressed at

the Fermi energy and will take the following form for |ε| > ∆:

ρS(ε)

ρS(0)
=

|ε|√
ε2 −∆2

(4.6)

This result is coincidentally similar to the density of states for s-wave superconductors

[14].

Copyright© John Nichols, 2012.
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Chapter 5 Tunneling in Sr2IrO4

5.1 Sample Preparation

A unique property of Sr2IrO4 is that even though it remains insulating, it maintains

a finite resistance even at cryogenic temperatures. From Figure 4.3 the resistivity

along the c-axis at low temperatures is ∼ 106 Ω·cm. Typical sample dimensions are

2.5 mm × 2.5 mm × 1 mm which will produce a maximum overall resistance along

the c-axis of ∼ 1 MΩ. This allows tunneling experiments, which require electrical

conduction, to be conducted on this system which has an insulating ground state.

The samples used in these experiments were created using the flux method and are

different samples from the same batch as the samples used in the optical conductivity

[33] and ARPES [35] measurements.

Since STM experiments measure the properties of a material’s surface, it is critical

to ensure that the surface is clean. The susceptibility of the surface quality of Sr2IrO4

deteriorating when exposed to ambient conditions was investigated with an atomic

force microscope (AFM). An AFM works in a similar manner as an STM however

mechanical interactions are measured instead of a tunneling current. Typically an

AFM has less spacial sensitivity than an STM but is able to investigate larger areas

of the sample.

A Sr2IrO4 crystal was cleaved and then immediately placed in the AFM for mea-

surements. Since the AFM operates in ambient conditions, the sample surface had

been exposed for approximately 20 minutes at the completion of the image acquisi-

tion. This image can be seen in Figure 5.1 a) and represents a 3 × 3 µm2 area of

the sample surface. It was acquired using contact mode with a setpoint of FN = 1.16

nN. This acquisition method is similar to constant current STM, but the setpoint is

a force instead of a current. So the AFM tip was swept across the sample surface
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and the change in voltages applied the the z-piezo in order to maintain this setpoint

is plotted. Notice that this image has a relatively flat grey background that is the

underlying crystal. In addition there are several black pits and white mounds on the

surface which are believed to be due to a deteriorating surface. The pits and mounds

are most probably the formation of strontium oxide (SrO2) on the surface. This for-

mation of oxide continues with time as illustrated in Figure 5.1 b) which displays the

surface of the same Sr2IrO4 crystal roughly one month after it was cleaved. Now the

entire surface consists of the oxide layer. Notice that the full range of the false color

scale is approximately 4 times larger implying that these features are much larger

the ones observed shortly after cleaving. Also note that this is a relative scale. This

means that since the underlying crystal cannot be viewed in the image, the absolute

thickness of the oxide layer cannot be determined. However it can be concluded that

the surface roughness is ∼8 nm and that the oxide layer is at least this thick.

This proves that in order to do STM measurements on Sr2IrO4, the surface must

never be exposed to ambient conditions. This can be accomplished by cleaving the

sample in situ. This means that the sample is broken while under vacuum and then

mounted to the STM for measurements without breaking the vacuum. This is done

by gluing a thin rod to the end of the sample and then knocking the bar off the crystal

while in vacuum and potentially at cryogenic temperatures. Ideally this will result

in the crystal breaking and exposing a clean surface. Typically, in our laboratory

samples are mounted to the STM sample holder with a conducting epoxy (Epoxy

Technology E4110). This naturally provides the electrical contact to the sample

necessary for STM experiments. This proved to be problematic with Sr2IrO4 due

to the strength of the crystal. When attempting to cleave these crystals using the

conducting epoxy, the most common occurrence was either the entire sample remained

on the sample holder or the cleave rod. Therefore the samples and cleave rods were

attached with a stronger epoxy (Stycast 2850FT) which is insulating in nature. The
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electrical contact with the sample was then made by placing silver paint over the

insulating epoxy bridging the sample and sample holder. The configuration for how

Sr2IrO4 crystals were mounted in order to cleave the crystals in situ is illustrated in

Figure 5.2.

Our STM experiments were conducted in a cryogenic probe that is evacuated and

then submerged in a cryogenic liquid. This allows the pressure of the probe to be

improved by cryogenic pumping. So if the sample is cleaved at lower temperatures,

the sample surface will be more pure due to the improved base pressure. All results

presented in this thesis obtained from STM experiments on Sr2IrO4 were conducted

on samples that were cleaved in situ at T = 77 K. Samples were cleaved along the

ab-plane and mounted in the STM such that the tunneling was into the c-axis. In

other words, the STM tip was parallel to the c-axis.
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Figure 5.1: Contact mode AFM images of 3 × 3 µm2 area of Sr2IrO4 surface taken
with FN = 1.16 nN. The images were obtained on the same sample a) ∼20 minutes
after cleaving and b) ∼4 weeks after cleaving.
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Figure 5.2: The sample mounting configuration of Sr2IrO4 for STM experiments.
The samples were initially attached with a stong insulating epoxy and then electrical
contact to the crystal was made with silver paint.
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5.2 STM Setup

Since an STM has a very large spatial sensitivity, it is essential to isolate it from exter-

nal mechanical vibrations. Thus in order to accomplish STM experiments at cryogenic

temperatures care must be taken in the design of the experimental setup. Typically

removing mechanical coupling with the surroundings will also remove thermal cou-

pling. Therefore it is necessary to have enough mechanical isolation to successfully

perform the measurement while keeping the thermal time constants in changing the

STM temperature small enough to be practical. This was accomplished by attach-

ing the STM to the end of the cryogenic probe through a spring isolation stage as

illustrated in Figure 5.3 The central pipe serves for vacuum pumping. The remaining

pipes are conduits for the many wires required for the STM. Since these tubes are

also under vacuum the electrical connectors used must be hermetically sealed. The

vacuum chamber is made of brass and connects to the end of the probe. This seal is

made vacuum tight by smashing an indium o-ring between the two pieces.

The end of the probe with the STM is shown with magnification to the right of

Figure 5.3. Most of the parts are made from brass. Note that the central pipe that

goes through the entire probe allows samples to be exchanged. In addition to the

spring stage, there is also a movable cap and a cleave bar necessary for in situ sample

cleaving. In order to accomplish this, a load lock vacuum chamber is placed on top

of the probe. A long stainless steel sample transfer rod is attached to the top of load

lock with a double o-ring seal. This creates a mechanical feed through that allows for

rotational motion as well as motion along the length of the transfer rod. This transfer

rod has a gear near its end and a left-handed thread on its end. The sample holders

are also made of brass and and can be mounted to the STM with a right-handed

thread. Similarly the transfer rod can engage and disengage the sample holder in situ

with the left-handed thread. This allows for samples to be mounted to the STM and
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removed with only rotational motion. Samples can be cleaved by gluing a small rod

on the end of the sample. If a cleave bar is moved perpendicular to this rod, the rod

on the sample should break away with part of the sample still attached to it. This

should result in a freshly cleaved sample remaining on the sample holder. Notice that

the cleave bar is shown in Figure 5.3 and it has a gear near the top. This enables

the gear on the sample exchange rod to engage this gear and rotate the cleave bar.

After cleaving, the thin rod that was glued to the sample will fall and remain in the

vacuum chamber. To ensure that it does not fall into the STM, the hole in the center

must be covered. Therefore a movable cap is placed in the chamber with a similar

gear that can be engaged to cover and uncover the central hole.

A single crystal of Sr2IrO4 was cleaved in situ at T = 77 K and then mounted to

the STM such that the STM tip was parallel to the c-axis. This fresh surface was

then imaged using an electrochemically etched tungsten tip. The tips were etched

using a 3 M solution of NaOH. Tungsten wire with a diameter of 0.25 mm is placed

through a lamella of the etchant and an AC voltage of Vrms = 1.5 V is applied. The

etching continues until the remaining wire is thin enough that the two pieces are

separated by the weight of the wire below the lamella. The bottom piece is allow to

fall into a cup that is placed underneath the tungsten wire. This opens the electrical

etching circuit and preserves the sharpness of the STM tip. STM tips created this way

have been studied with a scanning electron microscope. These studies showed that

these tips have a typical radius of curvature of ∼ 25 - 50 nm, many of which were

capable of producing atomic resolution images of a freshly cleaved HOPG surface.

An example of a scanning electron microscope image of an electrochimally etched

tungsten tip can be viewed in Figure 5.4. Panel a) displays a high resolution image

which illustrates the radius of curvature of the apex of the tip to be ∼ 40 nm while

panel b) displays a lower resolution image to illustrate to basic shape of an STM

tip. A problem with using tungsten STM tips is that tungsten oxide is produced
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Figure 5.3: The design of the probe used for cryogenic STM experiments. The image
on right is magnification of the end of the probe which rests inside the vacuum
chamber.

during the etching process and must be completely removed from the apex of the tip.

This is accomplished by submerging the tip in deionized water for roughly 5 minutes

followed by submerging it in HF for ∼ 30 s. The residual HF must then removed by

submerging the tip in deionized water. The tip would then have the water blown off

with compressed nitrogen gas and immediately installed in the STM and then put in

a vacuum chamber.

51



Figure 5.4: Scanning electron microscope images of an electrochemically ethched
tungsten tip with a magnification of a) ×500,000 and b) ×80.
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5.3 Experimental Results and Analysis

A typical STM image (top) of Sr2IrO4 and line profile (bottom) can be seen in Figure

5.5. This image is the raw data constant current image of a 109 × 109 nm2 area

of the sample surface. The bias voltage was Vbias = 300 mV and the tunnel current

setpoint was Iset = 200 pA. This positive bias enabled electrons in the tip to tunnel

into empty states in the sample. There are three primary regions of this figure labeled

I, II and III. Layer I is the dark grey region located near the center, while layer II is

the light grey region located on either side of layer I and layer III is the white region

located on the right of the image. This can be more easily seen in the line profile

which is represented as a white line in the image. This line profile shows that two

adjacent layers are separated by a sharp step. Recall that the c lattice parameter in

Sr2IrO4 is 25.799 Å [23]. Since the IrO6 octahedra rotate about the c-axis, the unit

cell is quadrupled in this direction. This results in two adjacent layers of Sr2IrO4

being separated by ∼ 7 Å. This is consistent with the separation between layers I and

III. This suggests that these two layers have the same chemical makeup and are in

two adjacent layers. Also the distance between layers I and II is roughly one third of

this value. This coupled to the fact that the electronic properties of each layer was

the same suggests that each exposed layer is an SrO layer and that layers II and III

are from the same layer while layer I is from an adjacent one as shown in Fig. 4.2. It

was typical to have the electrically insulating SrO layer exposed after cleaving.

In addition, smaller scale images of the sample surface were acquired as illustrated

in Figure 5.6. This image represents an 11.2 × 11.2 nm2 area of Layer II from the

upper left corner of Figure 5.5. This image was also obtained with Vbias = 300

mV and Iset = 200 pA. Notice that there is structure, however the spacing between

features is larger than the a lattice parameter. For example, two adjacent features are

separated by ∼ 17 Å which is roughly seven times larger than the distance between
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two adjacent Ir atoms. The inability to achieve periodic atomic structure in this

system is attributed to the conducting IrO layer being screened by the exposed SrO2

layer. The observed structure which is incommensurate with the underlying lattice

suggests this material is inhomogeneous. The inhomogeneity of Sr2IrO4 can also be

seen in the behavior of the Ir-O-Ir bond angle (θ) for the oxygen depleted system

Sr2IrO4−δ [48].

It has been shown that sharp STM tips can provide additional features in tunneling

spectroscopy [49]. In other words, the shape of the STM tip can create a non-constant

density of states in the tip, making Equation 2.26 invalid. This effect is minimized

with duller tips. Therefore in order to provide more consistent results an intentionally

blunt gold tip was used to acquire the tunneling spectra presented below. These tips

were created by melting the end of a 0.25 mm diameter gold wire with a hydrogen

torch. This results in the apex of the tip being a sphere with a diameter of 0.5 mm.

In addition to providing a constant tip DOS, the blunt tip will spatially average the

tunneling spectrum about a small area of the sample surface eliminating effects due

to the sample being inhomogeneous.

The electronic structure was investigated through scanning tunneling spectroscopy

at two temperatures 77 K and 4.2 K. A typical result obtained at 77 K is presented as

a red curve in Figure 5.7. Notice that there is a suppression of the DOS near the Fermi

energy. In addition, there is a slight asymmetry between positive and negative bias.

This is consistent with the particle-hole asymmetry previously reported in Sr2IrO4

[28]. The two high energy peaks at roughly ± 350 meV are due to the Mott gap

present in this material. Recall from Chapter 4 that the one-band Hubbard model

for a square lattice predicts that the density of states will have the form |ε|/
√
ε2 −∆2.

Substituting this result into Equation 2.27 will result in the following expression for
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the tunneling current:

dI

dV
∝
∫ ∞
−∞

dε
|ε|√

ε2 −∆2

e(ε+eV )/kBT
∗

kBT ∗(1 + e(ε+eV )/kBT ∗)2
(5.1)

Due to particle-hole asymmetry in Sr2IrO4 the two high energy peaks in the tun-

neling spectroscopy are separately fit to Equation 5.1. The fits have two parameters

∆ and T ∗ and are represented as dashed lines in Figure 5.7. The parameters to the

fit for positive bias voltages are ∆+ = 303 meV and T ∗+ = 519 K and the parameters

to the fit for negative bias voltages are ∆− = 312 meV and T ∗− = 633 K. This im-

plies that the full Mott gap measured through tunneling spectroscopy is 2∆ ≈ 615

meV. This value is slightly smaller than predicted through the Slater approxima-

tion of the one-band Hubbard model of 2∆ = 4
3
U |~S0| ≈ 800 meV, where the on-site

Coulomb interaction and the staggered magnetic moment are respectively U ≈ 2.0

eV and ~S0 = 0.307 [50, 47]. Conversely our measured result is slightly larger than

the gap measured by optical conductivity, angle resolved photoemission spectroscopy

(ARPES) and resonant inelastic x-ray (RIXS) experiments. Values for the Mott in-

sulating gap in Sr2IrO4 from different experimental techniques are presented in Table

5.1.

The Slater approximation does accurately predict the shape of the gap thus al-

lowing the magnitude of the gap to be extrapolated from the experimental data.

However this models fails to accurately predict the position or the broad width of

these features. The Slater approximation predicts that the peaks should be infinites-

imally narrow at T = 0 K and the width at finite temperature should be due solely

due to thermal broadening. If this were the case, the parameters T ∗+ and T ∗− would

be equal to T = 77 K, the temperature at which the data was acquired. However,

these parameters are several times larger than 77 K suggesting that the Slater ap-

proximation does not fully model the electronic properties of Sr2IrO4. The one-band

Hubbard model for Sr2IrO4 has also been solved utilizing dynamical mean field the-
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ory [50]. They were able to determine a spectral function that predicts the shape

of the insulating gap. However it predicts this feature to be much broader than we

observed experimentally. This suggests that neither the Slater approximation nor

dynamical mean field theory accurately describes this system. Since the Slater ap-

proximation ignores the frequency dependence of the self energy and dynamical mean

field theory ignores the momentum dependence of the self energy [51], any model that

accurately describes this system likely will have to account for both the frequency

and momentum dependence of the self energy.

Inside the Mott gap there are two features that appear as shoulders. Since Sr2IrO4

has magnetic ordering below its Neel temperature of TN = 240 K and charge effects

should be suppressed inside the gap, it is believed that these features are due to

inelastic tunneling from a single magnon. Features from inelastic tunneling should

appear as features in the voltage derivative of the differential tunneling conductance

(d2I/dV2) [52]. Since inelastic loss features in the differential tunneling conductance

should be symmetric the obvious asymmetry in these features is attributed to the

particle-hole asymmetry. Therefore we defined a new function g to be the even part

of the differential conductance presented in Figure 5.7. This function was obtained

by fitting the data to a Fourier sine series and equating g to the sum of the even

terms in the series. This expression was then differentiated and presented in the inset

of Figure 5.7. Notice that there is a peak at 125 meV. This value is consistent with

the single magnon observed in RIXS of 120 meV [34] and roughly half the double

magnon observed through Raman scattering of 240 meV [37].

A convienent property of this material is the behavior of its electrical transport

properties at low temperatures. Instead of the electrical resistance exhibiting an Ar-

rhenius type behavior as expected in more conventional insulators driven by thermal

excitations, it approximately flattens out with decreasing temperature (Figure 4.3).

Therefore the electrical resistance at T = 4.2 K is comparable to its value at T =
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Experiment 2∆ (meV) Reference
STM 615 This Study

Optical Conductivity 400 [33]
ARPES 580 [35]
RIXS 400 [34]

Table 5.1: Measured values of the Mott gap (2∆) in Sr2IrO4 with various experimental
probes.

77 K. This makes Sr2IrO4 a unique insulator regarding its ability to have tunneling

experiments performed on it even at liquid helium temperatures. The differential

tunneling conductance taken at T = 4.2 K can be seen in Figure 5.8 a). Notice that

the signal at this temperature is about an order of magnitude smaller than at T =

77 K. Also notice that there are features at values comparable to the four features

observed at T = 77 K which we feel still represent the insulating gap and the single

magnon excitation. This is consistent with the temperature dependence of the op-

tical conductivity which shows the insulating gap to be approximately independent

of temperature [33] and the Raman scattering which shows that the double magnon

excitation decreases in magnitude with rising temperature but maintains the same

value [37].

Surprisingly for energies less than the single magnon observed at T = 77 K, addi-

tional features became present. It has been shown that additional magnetic ordering

has been observed at temperatures of 100 K and 25 K [31]. This makes it likely for

the new features to be inelastic loss features due to this additional ordering. The

positions of these features are at energies significantly less than ∆. The differential

tunneling conductance was differentiated numerically and presented in Figure 5.8 b)

where the red and blue curves were taken at 77 K and 4.2 K respectively and the

dashed line is a guide for the eye. The d2I/dV2 curve represents the density of states

of inelastic excitations such as magnons. Note that there is an apparent asymmetry

that appears as a systematic shift in the data to the left. Since during data acquisition
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the bias voltage was swept from positive to negative voltages this shift is attributed

to the time constant of the lock-in amplifier and will be ignored. Notice that there

are prominent features in the blue curve at roughly ±35 meV. Since there are also

subtle features at comparable positions in the red curve suggests that the magnetic

ordering that occurs at T = 100 K has a magnon of ∼ 35 meV associated with it that

is suppressed with increasing temperature. Also note that there are features at ener-

gies of approximately ±12 meV in the blue curve that are fully suppressed suggesting

that the magnetic ordering that occurs at T = 25 K has a magnon associated with it

that has an energy of ∼ 12 meV.

Copyright© John Nichols, 2012.
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Figure 5.5: (top) A constant current image of 109 × 109 nm2 area of Sr2IrO4 suface
taken with Vbias = 300 mV and Iset = 200 pA. The three layers labeled I, II and III
are three didfferent atomic layers as indicated in Figure 4.2. (bottom) A line profile
of the image represented as a white line in the image.
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Figure 5.6: A constant current image of 11.2 × 11.2 nm2 area of Layer II of the same
Sr2IrO4 suface illustrated in Figure 5.5. It was obtained with Vbias = 300 mV and
Iset = 200 pA.
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Figure 5.7: The red curve is the differential tunneling conductace of Sr2IrO4 at T =
77 K. It was acquired from a lock-in amplifier with Vmod = 4 mV and fmod = 703.4 Hz.
The dashed lines are fits to Equation 5.1. Inset: The orange curve is the derivative
of the even component of the differential tunneling conductance.
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Figure 5.8: a) The differential tunneling conductace of Sr2IrO4 at T = 4.2 K. It was
acquired from a lock-in amplifier with Vmod = 10 mV and fmod = 704.2 Hz. b) The
voltage derivative of the differential tunneling conductance (d2I/dV2) at T = 4.2 K
(blue) and T = 77 K (red). The data was obtained by taking a numerical derivative
of the differential conductance presented above. The dashed line is a guide for the
eye.
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PART II

Development of a scanning tunneling microscope with long range lateral

motion
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Chapter 6 Scanning tunneling microscope with long range lateral motion

Ever since the discovery of the scanning tunneling microscope (STM) by Gerg Bin-

nig and Heinrich Rohrer [53], it has has proven to be influential to understanding

conducting materials such as superconductors [1, 2, 3], charge density waves [5, 6]

and Mott “insulators” [7, 8, 9]. The maximum displacements from an STM scanner is

typically ∼ 1µm [54]. Therefore all STMs require a coarse motion mechanism in order

to achieve tunneling conditions. Typically this coarse motion, which can traverse the

STM tip over macroscopic distances, is achieved by piezoelectric actuation in either

an inertial slider [55, 56] or slip-stick [15, 57] configuration.

In the first part of this thesis I described the basic functionality of a conventional

STM with a slip-stick actuator which was used to investigate the Mott insulating

system Sr2IrO4. This instrument along with the majority of other STM’s have a

major limitation of only being able to investigate microscopically small areas of the

sample surface. This is due to the coarse motion of conventional STMs only be

capable of translating the STM tip over macroscopic distances (∼ 1 mm) along the

the z-axis which is parallel to the tip. Many experiments require long range motion

in a direction parallel to the sample surface (x and y). For example, it is known that

the electrical properties of charge density wave materials vary from one contact to the

other. Additional long range motion would enable the evolution of these electrical

properties in between the two contacts to be determined. Other examples include

studying the proximity effect near a normal metal-superconducting interface or charge

transport near a metal-semiconductor interface. The long range lateral motion would

enable it to produce numerous tunneling junctions without exchanging the tip or

sample. This would make STM experiments on microscopically small samples such

as graphene possible. Typically graphene is produced through mechanical exfoliation
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and single layers occupy less than 1% of the substrate. This makes it highly probable

that no samples of interest would lie inside the microscopically small scan range of

a conventional STM. Therefore the probability of finding a single layer of graphene

would be drastically improved by investigating different areas of the surface until an

acceptable sample is located.

Several STMs that address the need of long range lateral motion have been de-

signed [16, 58, 59]. I will discuss a newly designed STM that we have developed

with course motion in two dimensions [17, 60]. In addition to being able to translate

the tip along the z-axis, as any STM must be capable, it can displace the STM tip

macroscopic distances in the x-direction, which is perpendicular to the tip and par-

allel to the sample surface. This STM was designed to be light and compact making

it ultrastable. It is capable of producing atomic resolution images of highly oriented

pyrolytic graphite (HOPG). It is compact enough to fit inside our low temperature

probe and has been shown to work at cryogenic temperatures. It was constructed

entirely out of non-magnetic materials making experiments inside a magnetic field

possible.

6.1 Design

The coarse approach of this newly constructed long range STM is based on principles

similar to the conventional STM described in Part I. It utilizes slip-stick motion with

piezoelectric actuators. However instead of using stacks of shear mode piezoelectric

plates, it utilizes piezoelectric tubes similar to the tubes used for the scanner. Its

coarse approach consists of six piezoelectric tubes made of PZT-8 with nickel elec-

trodes on both the inner and outer walls of the tubes. The outer electrode of each tube

is cut in half with two axial cuts as illustrated in Figure 6.1. The walker assembly was

constructed by gluing the six piezoelectric tubes to a central Macor piece. The tubes

were aligned such that the cuts were on the top and bottom of the assembly. Each
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tube has a length, outer diameter and wall thickness of 9.27 mm, 6.35 mm and 0.51

mm, respectively. Small sapphire disks were attached to both the top and bottom of

the free end of each tube as shown in Figure 6.1. Each disk has a diameter of 2.5 mm

and a thickness of 0.5 mm. Since each tube serves as a microscopic actuator, it was

necessary to make an electrical contact to each electrode that has weak mechanical

coupling with its surroundings. This was accomplished by soldering a small 0.045

mm diameter wire to both outer electrodes and the inner electrode of all six tubes.

Figure 6.1: Illustration of the walker assembly: 1) piezoelectric tube, 2) sapphire disk
and 3) central Macor piece.

The two outer electrodes enable the free end of each tube to move in two dimen-

sions. Identical to the tubes used for the scanner, if the voltages applied to each

outer electrode are identical in both magnitude and polarity, the tube will elongate

or contract enabling motion along the z-axis. For the polarization convention of the

piezoelectric tubes used, a positive applied voltage to both outer electrodes while hold-

ing the inner electrode at ground potential will cause the tube to contract. Similarly,

the tube will elongate when negative voltages are applied to each outer electrode.

The tube will move along the x-axis by applying voltages with equal magnitude and

opposite polarity to the two outer electrodes. If the inner electrode is grounded, then

the half of the tube with a positive applied voltage will contract while the half with

the negative applied voltage will elongate by the same amount. This results in the
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free end of each tube moving along the x-axis. An illustration of how voltages of a

given polarity will lead to motion in each dimension can be seen in the top of Figure

6.2.

Figure 6.2: (top left) The walker assembly in the relaxed state with all electrodes
held at ground potential. (top middle) The walker assembly with legs elongated and
contracted for motion in the z-direction. (top right) The walker assembly with legs
bent for motion in the x-direction. (Bottom) Diagram of how individual pulses are
orchestrated to obtain net motion in all four directions.

An exploded view of the entire long range STM is illustrated in Figure 6.3. In the

middle, the walker assembly labeled number 4 can be seen with the scanner and tip

concentrically installed into one of the tubes. The scanner is also made of PZT-8 and

has a diameter of 3.18 mm, a wall thickness of 0.51 mm and an overall length of 4.57

mm. The effective length of the section of the tube responsible for scanning in the
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xy-plane is 1.91 mm. This scanner is roughly half the size of the scanners installed in

our conventional STMs making its maximum scan area (150× 150 nm2) roughly four

times smaller. However the long range motion of this STM more than compensates

for its limited scan area of a single scan. The main body of the STM is made of two

Macor pieces placed above and below the walker assembly. Sandwiched in between

each Macor piece and the walker is a thin optically polished alumina oxide plate.

These plates and sapphire disks provide the smooth hard interface necessary for slip-

stick motion. For this type of motion, the scanner must be held with a frictional force

that is large enough to hold the walker assembly stationary and small enough that the

piezo tubes can break the static friction and move relative to the STM body. Precise

control of the magnitude of the frictional force is achieved by a differential spring

system. Four stiff springs are attached to the lower Macor piece in between the two

Macor pieces and four soft spring are attached to the lower Macor piece in between it

and the stainless steel bars. All eight springs are made of beryllium copper. The four

stainless steel screws pass through both Macor pieces and thread into holes in the

stainless steel bars. As the screws are tightened the soft springs compress more than

the stiff ones yielding great control of the magnitude of the frictional force. With this

design of STM care must be taken to ensure that the frictional force is optimal and

the two alumina plates are parallel to one another.

Once the STM is assembled with an ideal frictional force, motion can be achieved

by applying appropriate voltage pulses to each electrode as illustrated in the bottom

of Figure 6.2. For example, for motion in the z direction (forward/backward) identical

pulses are applied to both outer electrodes of only one walker leg. The pulse rapidly

applies a large voltage to the leg and holds it there. The ramp time of this transition is

∼ 10 µs. This pulse causes the leg to rapidly move in the desired direction of motion.

The remaining five legs hold the walker assembly stationary while the other legs move

relative to the STM body. This process is repeated one be one until all six walker legs
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are in the stressed state. Now the voltages are slowly removed simultaneously from

all six walker legs allowing them to relax. This process results in the center of mass

of the walker assembly translating a microscopic distance along the z-axis. Similarly,

motion in the x direction (left/right) can be achieved by going through the same

process except the voltage pulses applied to the two outer electrodes of each walker

leg will have opposite polarity. Notice how in the bottom of Figure 6.2 each pulse

moves one walker leg in the desired direction of motion and then after the voltages

are removed the final position of the walker assembly is displaced by a small distance

from its initial position.

Figure 6.3: STM Assembly: 1) stainless steel screws, 2) top Macor piece, 3) top
alumina plate, 4) walker assembly, 5) stiff springs, 6) bottom alumina plate, 7) bottom
Macor piece, 8) soft springs, 9) stainless steel bars and 10) scanner with tip.

This STM was intentionally designed to be compact to be compatible with our

existing cryogenic probe which has a 50.8 mm diameter opening. As temperature is
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lowered both the magnitude of the displacements of a piezoelectric material and its

strength decrease. In order to account for this loss of functionality, larger voltages

need to be applied at cryogenic temperatures than at room temperature. For piezo-

electric actuators to operate they need to be initially polarized by placing them in a

large electric field. Therefore, there is a maximum voltage that above which there is

risk of depolarizing the piezoelectric material. For the walker legs in this STM the

maximum voltage is estimated to be Vmax ≈ 200 V. Since the voltage necessary to op-

erate this STM at cryogenic temperatures exceeds Vmax, it was necessary to develop

new electronics to drive the walker. For the mechanical actuation, it is the change in

the magnitude of the applied voltage that is significant rather than the magnitude.

For example, a pulse that transitions from −150 V to +150 V will be equivalent to a

pulse that transitions from 0 to +300 V. However the latter case will be destructive

to the STM while the former never exceeds its operational limits. Therefore new

electronics were developed that create 12 bipolar pulses as illustrated in Figure 6.4.

Two pulses will occur simultaneously, one from +V to −V and the other from −V

to +V and two consecutive pulses are separated by 6 ms. The electronics consists of

a microcontroller which controls two digital-to-analog converters (DACs). The two

DACs generate the low voltage waveforms necessary to create the pulses. The wave-

forms need to be amplified with a series of conventional and high voltage amplifiers.

The pulses are created and applied to the appropriate walker legs by using a bank of

solid-state relays.

As with any new instrument it was convenient to calibrate the coarse motion of

this new STM. The step size is the size of the displacement of the walker assembly

after one round of pulses is applied to each leg. Both the peak-to-peak voltage and

the normal force dependence of the step size can be observed in Figure 6.5 for all four

directions. Note that forward is the direction in which the tip will approach the sample

and backward is in the opposite direction. Left and right are orthogonal to the other
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Figure 6.4: The twelve bipolar voltage pulses generated by the new electronics nec-
essary to drive the STM at cryogentic temperatures. Pulses of appropirate polarity
and timing are applied to the electrodes of the walker legs to obtain motion in a given
direction.

two directions. Motion of the walker was detected by observing the motion of a small

wire that was attached to the walker assembly. The wire protruded out of the STM

body and could be observed with an optical microscope with a magnification of ×100.

Since the step size is below the optical limit it was necessary to take multiple steps

and present the average step size. During the calibration runs, the walker assembly

would traverse distances ranging from 0.25 mm to 1.0 mm in all four directions.

The inset of Figure 6.5 displays the the force dependence of the step size in all four

directions: forward (+z), backward (−z), left (+x), and right (−x) represented by

circles, empty circles, squares, and empty squares, respectively. The pulses utilized

had a peak-to-peak amplitude of Vpp = 100 V. The dashed lines are guides for the

eyes. For slip-stick motion if the frictional force is too small, the walker legs will

slip resulting in no net motion. Similarly, if the frictional force is too large the STM

body will clamp down on the walker assembly inhibiting it from moving. However,
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Figure 6.5: Voltage dependence of the step size in all four directions with a normal
force of 2.5 N applied to the walker. (Inset) The force dependence of the the step size
with Vpp = 100 V. The dashed curves are guides for the eye.

for intermediate forces motion will be achieved with a maximum in the step size

occurring in this region. Notice from the insert that the dynamics of motion along

each axis is quite different. For motion along the z-axis the maximum step size occurs

at ∼2.75 N, while the maximum for motion along the x-axis occurs at ∼2.0 N. For

frictional forces between 1.0 N and 2.0 N the magnitude of step size along the x-axis

is 3 − 4 times larger than the step size along the z-axis. Since for a force of ∼2.75 N

there is a maximum in the step size for motion along the x-axis and the magnitude of

the step size in all four directions are comparable this was a desirable force to operate

at.

The force was then set to 2.5 N and the voltage dependence of the step size was

obtained as illustrated in Figure 6.5. Since the frictional force serves as a mechanical

load the Equations 3.2 and 3.1 from Part I are not applicable in this situation. Notice

that there is a threshold voltage such that for pulses with an amplitude less than this
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threshold will result in no motion. For pulses with an amplitude greater than this

threshold voltage, the step size will have an approximately linear dependence on the

pulse amplitude. Coincidentally, the threshold voltage for all four directions is ∼55

V. From Figure 6.5 the step size per volt can be determine to be 2.2, 2.8, 4.2 and 4.3

nm/V in the forward, backward, left and right directions, respectively.

6.2 Experiment

In order to demonstrate the long range motion of this newly constructed STM, it was

used to acquire a high resolution image of an interface on the sample surface. The

interface was chosen to be gold-graphite boundary which was created by thermally

evaporating a 60 nm thick gold film on a freshly cleaved HOPG crystal as illustrated

in the top right of Figure 6.6. This was accomplished by masking half of a HOPG

crystal with mica during the evaporation process. The gold film was intentionally

never annealed leaving its surface microscopically rough. Conversely, freshly cleaved

HOPG forms atomically flat layers. Sample images obtained from the gold and HOPG

sides of the sample can be seen in the bottom left and bottom right of Figure 6.6,

respectively. Each of them is a constant current image of a 109 × 109 nm2 area of

the sample taken with Vbias = 1.0 V and Iset = 1.0 nA. Both images have been given

the same vertical grey scale of 16 nm to emphasize the drastically different surface

roughness of each material. This allows a quick and easy determination of which side

of the interface the STM tip is at. This STM is capable of producing periodic atomic

structure of the HOPG side of the sample as can be seen from the top left corner of

Figure 6.6. The image is a constant current image taken with Vbias = 200 mV and Iset

= 1.0 nA. It clearly illustrates the trigonal structure expected from an STM image

of HOPG. Note that two adjacent white dots are second nearest neighbors separated

by 2.56 Å.

Initially an electrochemically etched tungsten tip was placed in the long range
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Figure 6.6: (Top left) An atomic resolution image of HOPG obtained with Vbias =
200 mV and Iset = 1.0 nA. (Top right) The sample configuration which consists of
a substrate of HOPG with 60 nm thick gold layer on half of it. (Bottom right) An
STM image of an 109× 109 nm2 area of the gold side of the sample taken with Vbias

= 1.0 V and Iset = 1.0 nA. (Bottom left) An STM image of an 109× 109 nm2 area of
the HOPG side of the sample taken with Vbias = 1.0 V and Iset = 1.0 nA. It has been
adjusted to have the same false color scale as the gold image on the bottom right.

STM which was placed in the low temperature probe described in Part I. The probe

was evacuated to a pressure of P ∼ 10−7 torr with a turbomolecular pump, but the

experiment was conducted at room temperature. Note that the sample had been

exposed to ambient conditions, but both gold and HOPG surfaces are fairly inert.

Care was taken to ensure that the tip was aligned with the sample, however no

care was taken to ensure that it was near the interface. The tip then approached the

sample until it was within tunneling range and an image was obtained. It was obvious

from the image whether the STM was tunneling on the gold or the graphite side of
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the sample. If the image was flat similar to the bottom left of Figure 6.6 it would be

the graphite side. Conversely, if the image had a cloud-like structure similar to the

bottom right of Figure 6.6 it would be the gold side of the sample. This provided the

relative direction to the gold-graphite interface. To preserve the integrity of the tip it

would be withdrawn and then translated ∼ 250µm along the x-axis in the direction

of the interface. This process was repeated until the interface was crossed. Once the

tip traversed over the interface this process continues to be repeated but the tip is

moved a smaller horizontal distance. After repeating this process numerous times it

is possible to zero in on the gold-graphite interface and produce high-resolution STM

images of the boundary.

Figure 6.7: All images represent data obtained from a 109×109 nm2 area of the sample
near the gold-graphite interface obtained with Vbias = 1.0 V and Iset = 1.0 nA. (Top
left) A three-dimensional image with the flat HOPG region nearest to the viewer.
(Right) A two-dimensional image with a non-linear false color scale to emphasize the
interface. (Bottom left) Two line profiles taken from the data with line 1 represented
by unfilled circles and line 2 by filled circles.

An example of an image of the gold-graphite interface is presented in Figure 6.7.

Note that all three images in the figures were obtained from the same data set and

are presented in a slightly different manner. From the two-dimensional picture on the
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right side, one can clearly see a large flat region on the left which is the graphite and

a region elevated above it on the right side which is the gold. In order to emphasize

features on each side of the step, a nonlinear grey scale was used. A consequence of

this is it highlights the electrical noise on the graphite side of the sample. However it

also emphasizes the cloud-like structure on the right hand side which is characteristic

of an unannealed gold surface. The shape of the interface can be more clearly seen

in the three-dimensional image in the upper left corner of Figure 6.7. In this image,

it is rotated such that the graphite site is closest to the viewer. Notice that the

graphite is very smooth and the interface is very sharp. This can also be seen in the

two line profiles plotted in the bottom left of Figure 6.7. Line 1 and line 2 from the

two-dimensional image is represented by unfilled and filled circles respectively. From

this data it is clear that the thickness of the gold film measured with the STM is

in good agreement with the actual thickness of the film. For this example, the site

where the STM initially approached the sample was ∼ 520 µm from the interface.

Copyright© John Nichols, 2012.
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PART III

Investigations of voltage induced torsional strain in TaS3
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Chapter 7 Background of TaS3

In the 1950’s Rudolf Peierls and Herbert Fröhlich theoretically predicted that a one

dimensional electron gas with phonon interactions will be unstable at low tempera-

tures. This instability would be a metal-to-insulator transition (MIT). In other words

as the temperature is lowered, the electrical transport properties of the one dimen-

sional system would undergo a sharp transition from a metallic state to an insulating

one at a critical temperature (TP). This transition temperature is commonly referred

to as the Peierls temperature. This phenomenon is due to distortions in the crystal

lattice. This distortion will create a modulation in the electron density called a charge

density wave (CDW). A consequence of a CDW is an energy gap is opened near the

Fermi energy. Since all states below the gap are filled and the ones above are empty,

these materials will be insulators.

This is illustrated in Figure 7.1 where the crystal structure and the energy dis-

persion for a one-dimensional system is shown. Panel a) displays the system being

metallic for T > T P while panel b) shows the system being insulating when T < TP.

Notice that when the system is metallic, all atoms are equally spaced by the lattice

parameter a and the electron density ρ(r) is constant. However, when the tempera-

ture is lowered below TP there is a lattice distortion. For this example, atoms shift so

they are closer to some nearest neighbors and further from others as shown in Figure

7.1 b). This results in a larger unit cell with a lattice parameter 2a. This distortion

in the crystal lattice creates a modulation in the electron density. This leads to a

gap opening near the Fermi momentum (kF ) which can be clearly seen in the energy

dispersion displayed in Figure 7.1 b). A consequence of this gap is the system will be

in an insulating state.

Although the theories of Peierls and Fröhlich are interesting and important to
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Figure 7.1: a) Atomic structure (top) and energy dispersion (bottom) for a one-
dimensional system for T > TP. b) Atomic structure and energy dispersion for T <
TP [61].

fundamental science, it was believed that such materials would never be realized in

macroscopic crystals due to all crystals having a three dimensional structure. Remark-

ably in the 1970’s structural deformations due to CDWs were observed through x-ray

scattering in the quasi-one dimensional materials K2Pt(CN)40.3Br·xH2O(KCP) [62]

and TTF-TCNQ [63, 64]. These materials are respectively an inorganic conductor

and an organic charge transfer salt. The term “quasi-one dimensional” or “quasi-

low dimensional” refers to a three dimensional material which is highly anisotropic.

The electrical transport properties for the different spatial dimensions in these ma-
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terials can differ by several orders of magnitude making them approximately one-

dimensional.

Since CDW conductors were first realized, this phenomenon has been observed

in numerous materials including NbSe3 [65], NbS3 [66], TaS3 [67], K0.3MoO3 [68, 69],

Rb0.3MoO3 [70] and (TaSe4)2I [71]. The high anisotropy of these materials is due

to their crystal structures which consists of a series of parallel chains. The electrical

conductivity along these chains is very high in comparison to the conductivity between

adjacent chains. The chains of NbSe3 can be seen in Figure 7.2. In this figure, the Nb

and Se atoms are represented by filled and empty circles respectively. In addition to

the strong anisotropy, CDWs exhibit some extremely exotic properties such as non-

ohmic electrical conductivity, novel elastic properties and huge dielectric constants.

Figure 7.2: a) Crystal structure of NbSe3. The Nb and Se atoms are represented by
filled and unfilled circles respectively [72].

The example shown in Figure 7.1 is an over simplified case. In this example the

wavelength of the charge modulation λρ is equal two times the lattice parameter a

resulting in a commensurate CDW. In general, if the ratio λρ/a is a rational number

the CDW is commensurate. Conversely, the CDW will be incommensurate if the
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ratio is irrational. Most CDW systems are commensurate. Incommensurate CDWs

occur due to inequivalent chains and inter-chain coupling. All sliding CDWs are

incommensurate. Assuming the z-axis is parallel to the crystal chains, the charge

density ρ(z) will be modeled by:

ρ(z) = ρ0 + ρ1cos(qz + φ(z)) (7.1)

where ρ0, ρ1, q and φ(z) are a constant, the amplitude of the CDW modulation,

the wavevector and the position dependent phase respectively. Any crystal will have

defects and impurities in the lattice. For many CDW systems the phase of the CDW

will adjust itself such that a maximum or minimum in the charge density occurs

at the defect or impurity. As a result the CDW will be “strongly” pinned to the

underlying lattice. Lee and Rice (Ref. [73]) showed that in some systems, φ(z) will

gradually adjust itself to variations in the impurity concentration of the lattice. This

is referred to as “weak” pinning. In 1976 it was shown by Monçeau et. al. that if a

large enough electric field is applied to crystals of NbSe3, the weakly pinned CDW

will be depinned from the underlying lattice and slide through the crystal carrying

current [65]. The threshold field (voltage) at which the CDW is depinned is labeled

ET (VT). This sliding CDW phenomenom has since been observed in other systems

such as TaS3 and K0.3MoO3.

TaS3 has a Peierls temperature of TP = 220 K and a crystal structure similar to

NbSe3 which is illustrated in Figure 7.2. It exhibits non-ohmic conductivity and a

voltage induced decrease in its Young’s modulus and shear modulus. More recently,

in 2007 Pokrovskii et. al. discovered an exotic torsional piezo-like response in single

crystals of TaS3 [74]. In this thesis, I present our work observing and investigating

the origin this unique phenomenon called voltage induced torsional strain (VITS).

There are two known polytypes of TaS3, orthorhombic (o-TaS3) and monoclinic

(m-TaS3) [75]. All the results and discussions below are specifically related to the
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physical properties of the orthorhombic polytype. So note that all references to TaS3

in this thesis directly imply o-TaS3.

The exact crystal structure of TaS3 is yet to be determined due to the large

number of defects present [76]. It does have a structure similar to other transition

metal trichalcogenides (MX3) such as NbSe3. It has been proposed that the unit cell

will consist of 24 different chains similar to the individual chains of NbSe3 as shown

in Figure 7.2 [77].

7.1 Resistance

As the temperature in TaS3 decreases, it will transition from a metallic to an insulat-

ing state. This behavior is clearly illustrated in the temperature dependence of the

resistance for sample E shown in Figure 7.3 a). Notice that for temperatures below

the Peierls temperature of TP ∼ 220 K, the resistance begins to rapidly rise from

a few hundred ohms to several thousand ohms. The thermal excitation gap in the

material can be obtained by fitting the resistance data to an Arrhenius model:

R(T ) = R0 Ln

(
∆

kBT

)
(7.2)

where ∆ is the excitation gap, R0 is a constant, kB is the Boltzmann constant and

T is the temperature. This is used to fit the low temperature data as displayed in

Figure 7.3 b) as a solid black line. For sample E the measured gap is approximately

2∆ ∼ 1583 K ∼ 137 meV. The values of 2∆ for all the samples discussed are presented

in Table 8.1. The insulating gap in this material should be intrinsic to the material

but notice there is a slight sample dependence in the activation energy. This is due

to defects in the crystal driving the Fermi energy away from the center of the gap.
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Figure 7.3: Temperature dependence of the resistance of TaS3 (Sample E). The line
in b) is a fit to Equation 7.2.

7.2 Elastic Properties

In the mid 1980’s, it was shown through vibrating reed measurements that in single

crystals of TaS3 there is a voltage induced decrease in the Young’s modulus (Y) by

∼ 2% [78, 79]. This effect was shown to be due to CDW depinning. It was then

discovered the the shear modulus (G) also decreased when the CDW was depinned

[80]. However the change in G is ∼ 25%, making it a much larger effect. These elastic

anomalies suggest that the pinning of the CDW to the underlying crystal lattice is

correlated to interchain coupling. Whenever the CDW is depinned, the interactions

between adjacent chains decrease allowing for smaller elastic moduli. For both cases,

the anomaly commences at VT and as the respective moduli decrease, there is also

an increase in the internal friction. The internal friction for the shear compliance (J

= 1/G) or shear modulus is:

(Internal Friction) = tan δ =
Im(J)
Re(J)

= −Im(G)
Re(G)

(7.3)
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Figure 7.4: Voltage dependence of a) shear compliance (J=1/G) and b) internal
friction (tan δ) for sample E. The depinning threshold is marked with vertical arrows.

Note that the Young’s modulus will obey the same equation by replacing G with Y .

The voltage dependence of the shear compliance and the internal friction for sample

E is displayed in Figure 7.4. Note that J0 is defined to be the zero voltage response

of the shear compliance response (J0 ≡ J(V = 0)). Notice how both begin to increase

at VT ∼ 180 mV, however the shear compliance continues to rise while the internal

friction rapidly increases and then slowly decreases for V > 470 mV. The increase in

the shear compliance is smaller than 25% due to its mounting configuration which

will be discussed below.
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7.3 Voltage Induced Length Changes

In 1992, Hoen el. al. discovered that TaS3 crystals would have voltage induced

changes in its overall length [81]. Their results are displayed in Figure 7.5. They

discovered that this motion has a hysteretic voltage dependence. This response would

commence at voltages slightly below threshold and then saturates at voltages slightly

above threshold. The relative length change is ∆L/L ∼ 10−6 with relaxational time

constants of ∼ 10 s. They proposed that these changes were due to changes in the

CDW near VT coupling to the underlying lattice changing the overall length of the

sample.

Figure 7.5: Voltage dependence of the change in overall length of the TaS3 crystal
(top) and relative change in resistance (bottom) [81].

Itkis et.al. (Reference [82]) showed that the electrical contacts can affect the

CDW. Figure 7.6 presents the position dependence for both the CDW phase (φ = dq
dz
)

and the change in the CDW wave vector (∆q) in CDW crystal. Notice that in the

center of the sample, there are no changes in either φ or ∆q. However, near both

contacts φ increases while ∆q increases near the positive contact and decreases near
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the negative one. These responses are approximately symmetric about the center

of the crystal, but there is a slight asymmetry. The asymmetry can be seen in the

response being slightly larger near the negative contact than it is near the positive

contact. I will discuss in greater detail below how this asymmetry gives rise to the

voltage induced length changes.

Figure 7.6: The position dependence the CDW phase (φ = dq
dz
) and the change in the

CDW wave vector (∆q) [82].

Copyright© John Nichols, 2012.
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Chapter 8 Experimental Setup

In order to measure the voltage induced torsional strain (VITS), it is necessary to

measure small rotations of ∼ 1° in the narrow ribbon shaped crystals of TaS3 at

cryogenic temperatures. If a steel bar is attached to the crystal such that it is per-

pendicular to the crystal, linear displacements of the bar can be measured to represent

the twist angle. Assuming the steel bar is attached to its center as in Figure 8.1 and

the twist angles are small, the linear displacement of the free end of the steel bar

(∆s) will be:

∆s =
L

2
∆φ (8.1)

where L is the overall length of the steel bar and ∆φ is the twist angle. For a steel wire

with L = 1 mm, the linear displacement per unit angle will be ∆s/∆φ ∼ 10µm/degree.

In order to measure displacements of this magnitude, a helical resonator [83] is uti-

lized. Two distinct advantages of a helical resonator is it is very compact enabling it

to easily fit inside a cryogenic dewar and the resonant frequency of the RF cavity is

extremely sensitive to mechanical changes near the free end of the helix which serves

as the transducer. So if the steel wire attached to the sample is placed in close prox-

imity to the transducer, as in Figure 8.2, the resonant frequency of the cavity will

be highly sensitive to microscopic changes in changes in the separation between the

steel wire and the transducer as the sample twists.

8.1 Sample Configuration

To measure the VITS response in TaS3, the sample must be mounted with electrical

contacts on each end with one end mechanically free to rotate. Two methods of

mounting the long narrow TaS3 crystals has been used and are illustrated in Figure
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8.1. The first method shown in a) has the free end of the TaS3 crystal connected with

silver epoxy to a NbSe3 crystal and a magnetized steel wire which are respectively

parallel and perpendicular to the TaS3 crystal. The two ends of the overall assembly

are then rigidly mounted to a sample holder with silver paint and placed such that the

steel wire is∼ 100 µm from the transducer that is the end of the helix in the RF cavity.

The steel wire is magnetized in order for applied external magnetic fields to twist the

crystal. This enables the electronics to be calibrated and to apply external torques

to the sample. Since NbSe3 remains metallic at T = 77 K, the voltage drop across it

should be negligible at this temperature. A consequence of the NbSe3 is it serves as a

torsional spring in parallel with the TaS3 and will decrease the overall response of the

system. TaS3 and NbSe3 have comparable elastic constants. Therefore the amount

of attenuation depends primarily on the relative lengths and cross-sections of the two

crystals. Since VITS depends on depinning of the CDW, a more robust mounting

technique illustrated in panel b) was developed. For this method a thin film of gold

(∼ 20 nm) was thermally evaporated on half of the crystal [84]. This will hold this

half of the crystal at the same electrical potential keeping the CDW pinned on this

side. This results in the VITS response being roughly half of its full response. The

magnetic wire serves the same purpose in this case but is attached after the TaS3

crystal is mounted to the sample holder.

The results from seven different TaS3 samples will be presented. These samples

are labeled sample A − G. The physical dimensions, electrical resistance and torsional

resonant frequency of these samples is displayed in Table 8.1. Samples A and B were

assembled with NbSe3 and the others with the thin gold film. For samples C − G,

the length presented is the length of the crystal without gold (i.e. the length of the

crystal responsible for the observed VITS). The total length of the crystal is roughly

double this length. The steel wire typically had a diameter of 25 µm and ranged from

1 − 3 mm in length. The torsional resonant frequency of the sample would depend
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Sample l (mm) w (µm) t (µm) R (kΩ) fres (Hz) 2∆ (meV)
A ∼ 2 ∼ 10 ∼ 4 57 100 137
B ∼ 2 ∼ 10 < 2 134 ∼ 30 126
C ∼ 2.5 ∼ 15 ∼ 4 ∼ 35 ∼ 560 135
D ∼ 2.5 ∼ 15 ∼ 4 ∼ 35 ∼ 800 135
E ∼ 2 ∼ 10 ∼ 2 90 ∼ 100 137
F ∼ 2 ∼ 10 ∼ 2 ∼ 66 ∼ 100 143
G ∼ 2 ∼ 10 ∼ 2 ∼ 24 730 141

Table 8.1: Physical properties of the seven TaS3 samples used, where l, w and t are
the length, width and thickness of the crystal respectively.

strongly on the length of the steel wire.

8.2 RF Cavity

Inside the RF cavity is the helical coil with the steel wire that is attached to the

sample in close proximity to it. The helical coil and steel wire can be modeled as an

LC circuit. Recall that the electrical impedance of an inductor and capacitor are iωL

and 1/(iωC), respectively, where ω is the angular frequency and L is the inductance of

the coil. The capacitance will be C = C0 +C1(d), where C1(d) is the capacitance that

forms with the steel wire and the transducer being separated by a distance d, while C0

is the constant capacitance between the transducer and the remainder of the cavity.

There will be an electrical resonance (ωr) that occurs when the two impedances are

equal in magnitude. The value of ωr will be governed by:

ω2
r =

1

LC
(8.2)

The dependence of the resonant frequency of the RF cavity on the separation between

the transducer and the steel wire will be:

∆ωr
ωr

= −1

2

dLnC
dd

∆d (8.3)
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Therefore if the sample twists such that the steel wire moves away from the trans-

ducer, ωr will increase. Similarly, if it moves closer to the transducer, ωr will decrease.

The RF Cavity has a resonant frequency of approximately 430 MHz and a quality

factor (Q = ωr/∆ω) of about 300, where ∆ω is the bandwidth of the resonant peak.

A block diagram for the experimental setup can be seen in Figure 8.3. The circuit

consists of an RF signal that is either frequency (FM) or phase (PM) modulated,

the RF cavity, a demodulation circuit, a lock-in amplifier and a computer to record

the data. The demodulated output will be related to the distance between the steel

wire and the transducer and thus the twist angle of the crystal. For small twists, the

output signal will be approximately proportional to the twist angle.

The RF generator and the low frequency function generator used for the modu-

lated RF signal are both commercially available devices. The demodulation circuit

is home built and the lock-in amplifier is also a commercially available instrument.

Near resonance the RF cavity will be a quarter wave cavity. [80]

Figure 8.1: a) Original sample mounting method with a TaS3 and NbSe3 crystal
connected at a steel wire. b) More robust configuration with a thin gold film on a
single TaS3 crystal with a steel wire attached at its center [84].
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Figure 8.2: Configuration of sample relative to the helix. Both sample types are
mounted this way.
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Figure 8.3: Block diagram of the experimental setup including the electronics and
RF cavity. [85]
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8.3 PM Technique

8.3.1 Phase Modulation

For phase modulation (PM) the modulated output of the RF cavity can be represented

mathematically by:

Vmod = cos(ωt+ φ) (8.4)

where ω is the frequency of the RF carrier and φ is the phase which is modulated at

a frequency of Ω and with an amplitude of φ0 represented by:

φ = φ0 cos(Ωt) (8.5)

The modulation occurs in the RF cavity and the modulated output is then sent to a

mixer. The mixer multiplies Vmod by the unmodulated input Vin = cos(ωt + π
2
) and

then averages this product over the period Tω. The unaveraged output of the mixer

will be:

Vmix = cos(ωt+ φ) cos(ωt+
π

2
) (8.6)

Utilizing trigonometric identities this expression will reduce to:

Vmix = [cos(ωt) cos(φ)− sin(ωt) sin(φ)][−sin(ωt)] (8.7)

Since φ0 � 1, to first order in φ0, cos(φ) ≈ 1 and sin(φ) ≈ φ. Utilizing this assump-

tion Vmix can be further simplified to:

Vmix = [−cos(ωt) sin(ωt) + sin2(ωt)φ] (8.8)
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The averaging results in the first term vanishing and the sin2(ωt) term averaging to

1/2. Therefore the output of the mixer will be:

Vmix =
1

2
φ0 cos(Ωt) (8.9)

Notice that the demodulated output of the RF cavity will be proportional to φ0, the

modulation amplitude. In experiments, the PM is obtained by rocking the sample

at a frequency Ω. This is accomplished either by applying an external AC magnetic

field or by applying a square wave voltage directly to the TaS3 crystal. Rocking the

sample while holding the RF cavity at its electrical resonance will modulate the phase.

Therefore φ0 will be proportional to the magnitude that the crystals are twisted.

8.3.2 Shear Compliance

The shear compliance (J) is the inverse of the shear modulus (1/G). The experiments

measuring J were similar to those conducted by Zhan et. al. [86, 87, 85]. The

main difference is our response is attenuated by the NbSe3 or the portion of the

crystal electrically shorted by the gold film. This measurement is critical because

VT can be obtained much more cleanly from shear compliance data rather than from

the resistance curves. The shear compliance is obtained by applying an AC torque

to the sample. This is accomplished by applying a small AC magnetic field with a

Helmholtz coil that is attached to the tail of the dewar. The magnetic field is typically

driven with a 10 Hz sine wave. The lock-in amplifier will be tuned to the modulation

frequency that is driving the magnet. The demodulated output of the lock-in tuned

to the fundamental frequency will have an in-phase term that is proportional to the

amplitude of the rotation of the steel wire. In addition there is a quadrature term

that is related to a time delay in the response due to internal friction in the sample.

94



8.3.3 Square Wave Response

Voltage/Frequency Domain

In order to fully understand the VITS response, it is necessary to study its dynamics.

In order to accomplish this a bipolar square wave with a peak-to-peak amplitude of

2Vsquare is applied to the sample. The effect of this is that the sample should yield no

response for Vsquare < VT while the sample should rapidly rock from one twist position

to another for Vsquare > VT. Similar to the J measurement, the lock-in amplifier is

tuned to the fundamental frequency of Vsquare. The in-phase signal (VIP) will be

related to the amount the sample is twisting while the quadrature (Vquad) is related

to the time delay in the VITS response. This response can be plotted with respect

to Vsquare or frequency. The voltage domain is easier to obtain, but the response

in the frequency domain can have the dynamics extracted by fitting the data to an

appropriate relaxation model.

Time Domain

It is also possible to acquire the time dependence of the square wave response. For

these experiments, Vsquare is still applied to the sample as above, however an FM signal

is applied to the cavity, which will be described in greater detail below. The lock-in

is tuned to the fundamental frequency of the FM and only VR =
√

V2
IP + V2

Quad is

collected [86]. This signal is directly related to the static twist angle of the crystal.

The time constant of the lock-in τLI is chosen such that TFM � τLI � Tsquare,

where Tsquare = 1/fsquare is the period of the square wave applied to the sample

and TFM = 1/fFM is the period of the frequency modulation. This enables the lock-in

amplifier to serve as a low pass filter. This data is collected with a digital oscilloscope.

Depending on the value of τLI chosen, there still may be appreciable 60 Hz and RF

noise in the signal. This noise can be eliminated by carefully choosing fsquare such

95



that it is not a sub harmonic of the noise. This allows the response to be numerically

averaged by the oscilloscope. Care was always taken to ensure that multiple periods

were acquired simultaneously giving confidence in the reproducibility of the VITS

signal.

8.3.4 Induced EMF

Since VITS is a piezo-like response, it was logical to investigate whether an induced

stress would induce an emf. This measurement was similar the the J measurement

which rocked the sample with a small AC magnetic field while applying a DC voltage

across the sample. The lock-in is still tuned to the fundamental modulation frequency

of the magnetic field, however the input is connected directly to the sample instead

of the output of the RF cavity. So we investigated whether the stresses applied from

the magnetic field would induce a voltage at the same frequency the sample was

modulated at.

8.4 Hysteresis Loops

8.4.1 Frequency Modulation

For frequency modulation (FM) the generated voltage that is fed into the RF cavity

can be represented mathematically by:

Vin = cos(ωt+ φ) (8.10)

where φ is the phase and the frequency ω is modulated by an amplitude of α at a

frequency of Ω represented by:

ω = ωc + αcos(Ωt) (8.11)
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where ωc is the unmodulated frequency of the RF carrier. Using a mathematical

progression similar to that associated with PM the output of the mixer from FM can

be shown to be:

Vmix =
1

2
(αt)cos(φ)cos(Ωt) (8.12)

For FM the demodulated output will depend on both α and φ. In experiment, the

static twists of the TaS3 crystal will change the resonant frequency of the cavity and

will in general change both α and φ. In order to maximize the response, it is necessary

to work slightly off resonance. The largest change in α will typically occur at one

of the −1.5 dB points [86]. Care can be taken to provide an appropriate phase shift

to the output of the cavity that will make the phase dependence of this response

negligible. Under these conditions the output of the RF cavity will be proportional

to the static twists of the sample. The main advantage of this technique is it does

not require the sample to be modulated, however it is more susceptible to external

mechanical noise.

8.4.2 Static technique

These static FM experiments were performed by applying a DC voltage to the sample.

The static VITS response of TaS3 will be proportional to the demodulated output of

the RF cavity. This allows for the voltage dependence of this response to be acquired.

The modulation would typically have a frequency of 40 kHz and an amplitude of 20

kHz. In order to maximize the static FM response, it was necessary to work with

the RF cavity slightly off resonance. The maximum FM response typically occurs

at a frequency displaced from the resonance by ±(0.5 − 0.7) MHz. The DC voltage

applied to the sample would be swept in a loop to observe hysteretic dependence

of twist angle on applied voltage for TaS3. A single measurement typically took

approximately 30 − 45 minutes to acquire. The nature of modulation techniques
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typically provides results with great relative resolution presented in arbitrary units.

Ultimately we were able develop a rough method of normalizing the VITS response

to absolute units. However this normalization is only approximate.

8.4.3 Dynamic technique

The static technique is incredibly sensitive to small changes in the resonant frequency

of the cavity. These changes are not always due to the VITS response we are inves-

tigating. For example, artifacts such as motion of the steel wire not due to VITS

or drift in the electronics will also contribute to the FM response. The amount of

time necessary to acquire a single static hysteresis loop makes it difficult to acquire

loops independent of artifacts. A technique similar to the square wave time domain

response described above can be utilized in order to both speed up the acquisition

time and to adjust for the small changes in the resonance of the cavity. In this case a

triangle waveform is applied to the sample and both the triangle reference signal and

the VITS signal need to be collected with the digital oscilloscope. So at each instant

in time, we have a torsional response and an applied voltage. These two signals can be

plotted with respect to one another creating hysteresis loop similar to the static loops

described above. Another advantage of this technique is the frequency dependence of

the hysteresis loops can be obtained. The total acquisition time for hysteresis loops

acquired with this technique varies with frequency and typically ranges between 30 s

and 180 s.

Copyright© John Nichols, 2012.
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Chapter 9 Voltage Induced Torsional Strain in TaS3

In 2007, Pokrovskii et. al. discovered a unique effect in TaS3 called Voltage Induced

Torsional Strain (VITS) [74]. This is a piezo-like effect that when a large potential

difference is applied across the two ends of these ribbon shaped crystals, the crystal

will rotate about its axis of symmetry. This phenomenon can be seen on the right side

of Figure 9.1. The bottom graph displays the electrical resistance along the z-axis

of the crystal plotted with respect to the applied current. The importance of this

curve is to obtain the threshold current (IT = VT/R0) which is the current the CDW

becomes depinned, where R0 is the ohmic resistance. For this sample IT ≈ ± 2 µA.

The curves above this display the twist angle of the sample also plotted with respect

to the applied current. Initially I = 0 µA and the current is lowered. Once I is less

than −2 µA the sample will twist and stay approximately in this configuration until

the current exceeds +2 µA. Now the sample twists in the opposite direction and

remains in this configuration until once again the current is lowered below −2 µA.

This shows that the VITS in TaS3 is hysteretic, is coupled to the CDW current and

has an amplitute of approximately 1°.

In order to measure the VITS response, the sample must be mounted such that

there are electrical contacts on both ends with only one end rigidly mounted allowing

the other end to rotate freely. They accomplished this challenge by attaching a small

BSCCO wire to the free end of the crystal as shown in the left panel of Figure 9.1. In

addition, several small BSCCO wires a few hundred micrometers long were attached

to the crystal to serve as mirrors. The rotation of the crystal was measured by

measuring changes in a laser which was reflected off these small mirrors.

Initially it was critical to confirm the effects observed by Pokvovskii el. al. with

the low temperature helical resonator setup. Loops were acquired by sweeping a DC
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Figure 9.1: (left) Sample setup with several BSCCO wires which serve as mirrors and
electrical contact to mechanically free end. (bottom middle) Magnification of BSCCO
mirrors. (top middle) Diagram of experimental setup. (bottom right) Electrical
resistance versus applied current. (top tight) Twist angle versus applied current
acquired simultaneously with the resistance. (inset of top right) Another sample
from same parent sample mounted in opposite configuration [74].

voltage and measuring the twist angle similar to the results presented in the upper

right of Figure 9.1. These loops are referred to as hysteresis loops and will be presented

with respect to voltage instead of current. Initially the samples were assembled with

NbSe3 crystals as in Figure 8.1 a). The inset of Figure 9.2 a) illustrates a preliminary

measurement of a hysteresis loop while the main image displays a hysteresis loop for

samples A and B represented by unfilled and filled circles respectively. These results

were obtained using FM techniques at T = 77 K and verify that VITS is a genuine

effect. The direction of the hysteresis loops are presented as arrows. The loops also

show that the voltage at which the samples begin to twist (Von) is slightly smaller

than the CDW depinning threshold voltage of VT ∼ ±50 mV while the voltage the

sample finishes twisting (Vsat) is slightly larger than VT. Notice that the hysteresis

loops for samples A and B are slightly asymmetric with Von ∼ 20 mV and Vsat ∼

80 mV for positive voltages while for negative voltages Von ∼ −40 mV and Vsat ∼
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−100 mV. Note that the two hysteresis loops have been normalized such that the

VITS response has the same magnitude. The two samples having similar Von and

Vsat is coincidental. For example, the inset of Figure 9.2 a) shows a more symmetric

hysteresis loop with onset and saturation voltages different from the other two.

Figure 9.2 b) has the dependence of the electrical resistance and the shear compli-

ance on applied sample voltage acquired at T = 77 K. The resistance is normalized

to its ohmic resistance. Samples A and B are represented by unfilled and filled circles

respectively. When the CDW is depinned it begins sliding creating an additional

component to the overall current. This results in a drop in the overall resistance

which can be clearly seen for both samples. A common problem in TaS3 at low tem-

peratures is that CDW creep can begin at an additional threshold that is smaller

than VT [88, 89, 90]. In addition, since we are conducting a two-probe measurement

we are sensitive to CDW phase-slips [88]. This makes it difficult to accurately obtain

VT from the resistance data. However the CDW depinning transition can be more

clearly seen in the voltage dependence of the shear compliance shown in Figure 9.2

b). Samples A and B are represented by unfilled and filled triangles respectively.

The shear compliance is normalized to its value when the applied voltage is zero. A

single TaS3 crystal will have its lattice soften when the CDW is depinned resulting

in an increase in the shear compliance by ∼ 25% for low frequencies. The torsional

resistance of the NbSe3 reduces this response by approximately 80% in sample A and

by 30% in sample B. This suggests that the NbSe3 crystal used to make sample A

(B) has a slightly smaller (larger) cross-section than the TaS3 crystal.

The VITS response can be more cleanly measured by applying a square-wave

potential to the sample with a peak-to-peak amplitude of 2Vsquare. This will allow

for the dynamics of the VITS response to be investigated. It was anticipated that

there would be no response for Vsquare < Von. Then as Vsquare is increased above Von

there would be an increasing VITS response as the hysteresis loops begin opening up.
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Figure 9.2: a) Twist angle of the sample versus applied sample voltage for samples A
(open circles) and B (filled circles) in arbitrary units. Inset of a) twist angle versus
voltage for a third sample. b) Normalized electrical resistance and normalized shear
compliance versus applied sample voltage. The unfilled (filled) circles and triangles
respectively represent R/R0 and J/J0 for sample A (B). Inset of b) phase shifts of
VITS (unfilled triangle) and J (filled triangle) response versus applied voltage for 3
Hz and 10 Hz.
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Finally the signal would saturate and remain constant for Vsquare > Vsat because the

voltage is sweeping a complete hysteresis loop. Looking at the square wave responses

in Figure 9.3, it is clear that even with the similar looking hysteresis loops of these

two samples, their square wave response is quite different. Panel a) represents sample

A while panel b) represents sample B. The top of each panel displays the voltage

dependence of the in-phase response while the lower portions show the quadrature

response. Considering the different frequencies shown, it is clear that this is a very

slow response. The dynamics of the square wave signal continues to change and have

a quadrature response with frequencies as low as 0.1 Hz. This sluggishness can also

be seen in how the curves appear to move to the right with increasing frequency.

Both samples begin to have a response at approximately Von. This can be seen

more clearly in the inset of panel a) which shows the in-phase response for small

voltages for sample A. Also notice that sample A does not behave as anticipated.

Instead of the in-phase response saturating at Vsquare = Vsat ∼ 100mV, it continues

to grow until Vsquare ∼ 130mV. As frequency is increased, the voltage at which this

saturation occurs increases and begins to slide out of our voltage window. Similarly,

the quadrature signal for sample A has a peak near 80 mV which increases in both

width and position with increasing frequency. On the other hand, sample B behaved

slightly differently. Its low frequency in-phase response has a fairly symmetric peak

near 100 mV. Also this response is larger for smaller frequencies. However instead of

remaining constant, this signal begins to decay with increasing voltage. This response

represents an initial twist when the square wave transitions from positive to negative

or vice versa, followed by a relaxation towards its initial configuration while the

applied sample voltage remains unchanged. This decay is also evident in the negative

quadrature signal present at large voltages. Both the in-phase and quadrature have

a peak that increase in both width and position with increasing frequency. However

the position of the low frequency peak in the quadrature for sample B is at around
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75 mV, which is slightly smaller than the peak position of the in-phase response.

Figure 9.3: Dynamic VITS response to square wave voltage applied to sample A (a)
and B (b) for several different frequencies. The in-phase and quadrature response are
on top and bottom respectively. Inset of a) The in-phase response for small voltages.

The inset of Figure 9.2 b) displays the voltage dependence of the phase shifts for

the VITS response (unfilled) and ∆J (filled) response for 3 Hz (downward triangles)

and 10 Hz (upward triangles). Notice that the phase shift associated with the VITS

response is roughly three times larger than those associated with ∆J. This implies

that the VITS response is slower or more “sluggish” than the changes in the shear

compliance. Changes in the shear compliance is known to be due to CDW domain

configuration relaxing as the sample twists.

Since VITS is somewhat similar to the reverse piezoelectric effect, it was logical

to investigate the presence of an analogous piezoelectric effect where an electrical

potential is generated by an applied stess. Here the stress was applied to the sample
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by a small 10 Hz magnetic field. This is identical to how the shear compliance

measurements were conducted. However the modulated sample voltage was measured

with a lock-in amplifier instead of a digital voltmeter. So the sample was rocked at

a frequency of 10 Hz and the induced voltage was measured. In Figure 9.4 the AC

induced emf is plotted with respect to the applied DC voltage. Samples A and B

are respectively unfilled and filled symbols while the in-phase and quadrature signals

are appropriately labeled. Notice that as the applied DC voltage increases there is

no response until the sample voltage is ∼100 mV and then it increases steadily. Also

there is no measurable quadrature response outside of the noise floor. The unshown

3 Hz data was identical with this 10 Hz data. This suggests that the induced emf

response is much faster than the VITS response. When coupled to the fact the there

is no induced emf for voltages smaller in magnitude than Vsat, implies that this signal

is associated with the faster torsional piezoresistance [91] and not VITS. Therefore

there is either no induced emf associated with VITS or it is smaller than our noise

floor of approximately 3 µV.

The sluggishness of VITS in TaS3 can be seen in Figure 9.5 where the hysteresis

loops taken at several frequencies or periods (T) are presented for samples C and

D. These curves were acquired by utilizing the dynamic FM technique. The sample

was driven with a triangle wave voltage and the demodulated output of the cavity in

the time domain was recorded with a digital oscilloscope. These two samples were

mounted using the thin film of gold on approximately half of the crystal effectively

halving the torsional elastic anomalies. The depinning threshold voltages of the CDW

are shown as vertical arrows at the bottom of each graph. Notice that these values

are slightly larger than for samples A and B suggesting that they are less pure [61].

The threshold voltages are VT ∼ 300 mV for sample C and VT ∼ 200 mV for sample

D. One thing that is remarkable is that even though this response is very slow and

the dynamics vary greatly in the frequency window shown, the amplitude of the
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Figure 9.4: Inducted AC voltage for samples A and B with 10 Hz oscillating torque
applied to the sample.

VITS response is approximately unaffected by changes in frequency for these two

samples for voltage sweeps of ±2VT. Another feature is that samples C and D twist

in opposite directions. Similar to samples A and B, these two samples had an onset

of the twisting less than VT and a saturation voltage slightly larger than VT. The

parameter with the strongest frequency dependence is Vsat. As the period increases,

Vsat decreases for both positive voltages and negative voltages. Both samples C and

D have asymmetries in their hysteresis loops similar to samples A and B. However

for sample C the asymmetry is more in the dynamics. For positive voltages, the

voltage window in which the sample is twisting (i.e. Von < V < Vsat) is broader

than for negative voltages. Also Von is smaller for positive voltages than for negative

ones. Like samples A and B, sample C does minimal twisting for voltages above Vsat.

Sample D has a different form of asymmetry. Opposite of sample C, Von is smaller
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for negative voltages. Also, more drastic, is that for positive voltages there is a decay

for V > Vsat.

Figure 9.5: Hysteresis loops at several different frequencies for samples C and D. Each
curve is a numerical average of several cycles. The appropriate depinning thresholds
are shown on the bottom of each graph. There is an arbitrary vertical offset for
clarity.

If TaS3 is to be utilized as a microscopic torsional actuator, most probably it

will involve switching back and forth from positive and negative values. Figure 9.6

illustrates the VITS response due to a square wave potential being applied to the

sample in the time domain. This was accomplished in a similar manner as the hys-
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teresis loops in Figure 9.5 except the triangle wave is replaced with a square wave as

discussed in Section 8.3.3. The response at voltages of 1.5VT and 3VT are presented

for frequencies of 10 Hz, 1 Hz and 0.1 Hz. Each curve is normalized to its period.

A sample applied square wave voltage (Vapplied) is shown in the lower right panel to

illustrate the phase of the response. Notice that the signal from sample D is in phase

with the square wave while the response from sample C is out of phase. This also

implies that the two samples twist in the opposite direction and is consistent with

the response in Figure 9.5. Notice that for the long period curves at 3VT for both

samples the negative strains (i.e. when the response is less than zero) undergo a

small delay followed by a decay. This decay is absent from the small periods, smaller

voltages and for positive strains. Surprisingly in sample C for T = 10 s, the response

is larger for 1.5VT than it is for 3VT. Also the asymmetry in sample C is evident at

both applied voltages when this voltage transitions form negative to positive. When

this occurs, the VITS response spikes to a positive value before finally relaxing into

its negative value approximately 5 ms after the voltage transition. The asymmetry

is also evident for V = 1.5VT by the T = 1 s curve saturating after 100 ms for neg-

ative strains but not for positive strains. Also the T = 10 s curve saturates after

approximately 3 s for positive strains but not for negative strains. The differences in

the positive and negative half-cycles suggests that VITS has a complex dependence

on the history before each voltage switch in sample C. Although sample D is much

noisier than sample C, its response seems more symmetric.

The VITS response was also investigated by looking at the frequency dependence

when a square wave voltage was applied to the sample. Figures 9.7 and 9.8 display

this for several different voltages for samples C and D, respectively. This data was

obtained by sweeping the magnitude of Vsquare at a constant frequency identical to

the method used to obtain the data presented in Figure 9.3. The typical voltage

dependence of this response for samples C and D is shown in the inset of the respective
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Figure 9.6: Time dependence of the VITS response due to square wave potentials of
V = 1.5VT and V = 3VT. This response with periods of T = 0.1 s, 1 s and 10 s is
normalized to its period. The lower right panel shows the phase of the applied square
wave.

figures. These curves were obtained at several different frequencies and then frequency

slices at a constant voltage were plotted. For the insets, circles represent 0.2 Hz

data and triangles represent 5 Hz data. For all other plots, the in-phase signal is

represented by filled symbols and the quadrature signal is represented by unfilled

symbols. Note that the behavior in the voltage domain for both samples C and D is

in between the two extremes set by samples A and B illustrated in Figure 9.3. The

response of sample C at V = 2.25VT shows two inflection points in the in-phase and
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two peaks in the quadrature. This suggests that there are two relaxation processes

in this sample. Therefore the response is fit to the following equation:

εω =
εω1

1− iωτ1

+
εω2

1− iωτ2

(9.1)

where ω, εωi and τi are respectively the frequency, amplitude and time constant

associated the relaxation.

The voltage dependence of these parameters can be seen in Figure 9.9. For V

> 2VT the time constants have a very strong voltage dependence τ1 ∼ V−4.5 and

τ2 ∼ V−8. This is much stronger than the voltage dependence of the time constant

associated the the electro-optic responce τelectro-optic ∼ V−1.5 [92] which is related to

the diffusion of longitudinal CDW phase deformations that are enhanced by phase-slip

[93].

Figure 9.7: Frequency dependence of VITS response due to square waves applied to
sample C for V = 1.05VT, V = 2.25VT and V = 3VT. The inset shows the voltage
dependence of the square wave response for 5 Hz (triangles) and 0.2 Hz (circles).
The in-phase and quadrature response is represented by filled and unfilled symbols
respectively. The curves represent fits to Equation 9.1.

The response from sample D is shown in Figure 9.8. Notice that the quadrature
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signal is less than half that of the in-phase response suggesting that this sample would

be better modeled by a distribution of relaxation times:

εω =

∫
a(τ)dLnτ
1− iωτ

(9.2)

Thus the VITS response was fit to the Cole-Cole expression [94, 95]:

εω =
εω0

1 + (−iωτ0)γ
, (9.3)

where γ is a constant and the distribution of relaxation times is represented by:

a(τ) =
εω0

π

(
τ

τ0

)γ
sin(γπ)

1 + 2( τ
τ0

)γcos(γπ) + ( τ
τ0

)2γ
. (9.4)

The voltage dependence of the parameters of this fit is also displayed in Figure 9.9.

Figure 9.8: Frequency dependence of VITS response due to square waves applied to
sample C for V = 1.2VT, V = 2.1VT and V = 3VT. The inset shows the voltage
dependence of the square wave response for 5 Hz (triangles) and 0.2 Hz (circles).
The in-phase and quadrature response is represented by filled and unfilled symbols
respectively. The curves represent fits to Equation 9.3.
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Figure 9.9: The voltage dependence of the parameters from Equation 9.1 (Sample
C) and 9.3 (Sample D). Sample C is represented by filled symbols and sample D by
unfilled. The width of the distribution of relaxations times for sample D is shown in
the bottom panel. The curves are guides for the eye.
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In addition to the voltage dependence of the parameters obtained from fits to

Equations 9.1 and 9.3, the full width at half maxima (∆ Ln(τ/τ0)) for sample D is

also plotted in the bottom panel of Figure 9.9. Note that for small voltages (V <

1.5VT), the signal is in the hysteresis loop. This causes the peaks due to relaxation to

move out of our measurable frequency window. Therefore the parameters associated

with sample D for these voltages have very large uncertainties. Notice that for large

voltages (V > 2.5VT) τ0 is larger than τ1 and τ2. However for intermediate voltages

(1.5VT < V < 2.5VT) τ0 is larger than τ1 but smaller than τ2. Also, in this voltage

window the width of the distribution of relaxation times for sample D is between

one and two decades wide. The voltage dependence of τ0 is comparable to τelectro-optic

however, τ0 is roughly three orders of magnitude larger [92].

Copyright© John Nichols, 2012.
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Chapter 10 Temperature and External Toque dependence of VITS

10.1 Torque Dependence

We then began to investigate the dependence of VITS on an applied external torque.

This torque was created by a DC magnetic field which rotated the steel wire and

twisted the TaS3 crystal. The magnetic field was generated by passing an electric

current (IB) through a Helmholtz coil that is attached to the tail of the dewar. The

calibration factor of this coil is 80 Gauss/Amp. The voltage dependence of the re-

sistance and shear compliance is presented in Figure 10.1 for sample E with different

external torques applied to it. The data for IB = + 0.9 A is represented by upward

pointing triangles while the downward pointing triangles is for IB = + 0.3 A. Notice

that the resistance is approximately independent of applied external torque. Similar

to other samples, the depinning threshold is smeared out for reasons described above

(see Figure 9.2 b)).

Applying an external torque will change the separation between the steel wire and

the transducer. This will cause the magnitude of the response from the RF cavity to

decrease as the steel wire moves away from the transducer. So in order to compare

the torque dependence of the torsional response, the signal associated with different

values of IB must be normalized to each other. This is accomplished in a similar

manner as the shear compliance measurements. A small AC magnetic field is applied

by summing this modulated current with IB. The demodulated output of the RF

cavity with Vsample = 0 is defined as VJ0 . It is assumed that the modulated twists

in the crystal caused by the AC component of the magnetic field is independent of

IB. If the response is assumed to be linear, 1/VJ0 will be a linear function of IB (ie.

∆(1/VJ0) ∝ ∆IB ). Notice from the inset in Figure 10.1 that this is approximately

true, however there is a slight hysteresis. When the direction that IB was swept
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changes, the sample will stick slightly causing it to slightly undershoot its equilibrium

position. To ensure that the sample is initially in the same state, the CDW is depinned

by applying a positive voltage (i.e. Vsample > VT) to the sample. This voltage is then

removed and VJ0 is measured.

In addition, the geometry associated with the sample such as the length of the steel

wire and distance between the steel wire and the transducer can be used to normalize

the response to absolute units. The estimates in these measurements coupled with the

assumption that the geometry does not drastically change with temperature results

in this being a “rough” normalization of the signal. This normalization could be off by

up to a factor of two. In other words, the relative uncertainty remains small, but the

uncertainty associated with the normalization to absolute units is large. For sample

E, it was determined that the calibration factor is ∂φ/∂IB ∼ 12°/A. Therefore the

sample will twist by ∆φ ∼ 7° for changes in magnetic current of ∆IB = 0.6 A.

The bottom of Figure 10.1 shows the voltage dependence of the shear compliance

for two different values of IB. Note that these curves have been normalized as de-

scribed above. Notice that these two curves are similar but do not lie perfectly on

top of each other. It is not clear whether this is due to the shear compliance having

a small torque dependence or due to uncertainties associated with the normalization.

In either case this is a much smaller effect than the dependence of the square wave

response on applied torque described below. Therefore any dependence of the change

in shear compliance on applied torque is considered negligible. One can clearly see

that VT ∼ 180 mV for sample E and it is independent of external torque within the

sensitivity of our measurement.

Figure 10.2 a) presents the voltage dependence of the VITS response (εω) due to a

square wave potential being applied to the sample. These results were obtained in a

similar fashion to the ones presented in Figures 9.7 and 9.8 for magnetic currents of IB

= + 0.3 A and IB = - 0.6 A. Note that the normalization is displayed. This data was
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also obtained with sample E at T = 77 K. First notice that the overall amplitude of the

in-phase response (filled symbols) has a clear dependence on IB. Most remarkable is

that since the responses for the two magnetic currents have opposite signs, the sample

twisted in opposite directions. This illustrates that the applied external torque not

only changes the magnitude of the VITS response, but also its direction. Also, the

peak in the quadrature (open symbols) is at a voltage closer to VT for IB = - 0.6 A

suggesting it has a faster response than for IB = + 0.3 A. Shown in Figure 10.2 b) is

the frequency dependence of εω for two different values of IB and Vsquare. The lines

represent fits to Equations 9.3. The dependence of the parameters of these fits and

other unpresented curves on magnetic current is presented in Figure 10.3.

Hysteresis loops for sample F can be seen in Figure 10.4. These loops were ob-

tained in a similar manner as those in Figure 9.6. The applied triangle wave had a

frequency of 0.3 Hz and an amplitude 0.75 V. Note that twist angle of this sample

due to IB will be ∂φ/∂IB ∼ 5°/A and that the typical amplitude of a single hys-

teresis loop is ∼ 0.1°. The hysteresis loops have an asymmetry similar to samples

described above. The transition at positive voltages appears to be more gradual than

at negative voltages. The loop for IB = + 0.2 A has the largest amplitude. As IB is

increased further, the magnitude of this response begins being suppressed. At IB =

+ 0.8 A the main loop is completely suppressed leaving only a small loop at negative

voltages. For IB > + 0.8 A the main loop reopens. However, now it is twisting in the

opposite direction. An external torque changing the direction of the VITS response

is consistent with the results in Figure 10.2 a).

We have shown that the VITS response has a strong dependence on external

torque. From this we propose that this effect is due to a residual twist initially being

present in the crystal. This initial torque could be from either defects present in the

crystal or from mounting the crystal. So according to this model, when the response

disappears at IB = + 0.8 A, the magnetic field is untwisting the twist initially in the
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sample, approximately eliminating the response. The fact that there is still a small

loop at IB = + 0.8 A and that response is also suppressed for IB < + 0.2 A suggests

that there is a complex array of multiple twists initially present in the sample making

it impossible to completely eliminate the VITS response with external torques.

Notice that the hysteresis loops in Figure 10.4 for increasing values of IB have a_

shaped voltage dependence superimposed onto them. This is due to the increase in the

in the shear compliance for V> VT. Therefore the angle which TaS3 twists (φ(V)) due

to the external magnetic field will also depend on the sample voltage. So as J increases

for voltages above threshold, the change in the twist angle (∆φ(V) = φ(V)−φ(0)) will

also increase. For this sample, J/J0 ∼ 3% at V = 0.75 V, resulting in the amplitude

of the _ shape being comparable to the VITS signal at IB = + 1.0 A.

117



Figure 10.1: Voltage dependence of resistance and shear compliance at T = 77 K
for sample E. Values for applied magnetic currents of IB = 0.9 A (upward pointing
triangles) and IB = 0.3 A (downward pointing triangles) are presented. Inset 1/VJ0
dependence on IB used to obtain twist amplitude of ∂φ/∂VT ∼ 12°/A.
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Figure 10.2: a) Voltage dependence of the VITS (εω) at T = 77 K due to a 10
Hz square wave voltage applied to sample. The in-phase symbols are filled and the
quadrature symbols are unfilled. Data is presented for IB = + 0.3 A and IB = - 0.6
A. b) Frequency dependence of εω for IB = + 0.3 A and IB = + 0.9 A at Vsquare =
400 mV and Vsquare = 700 mV respectively. The curves are fits to Equation 9.3. The
twist angle is ∂φ/∂IB ∼ 12°/A.
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Figure 10.3: The dependence of parameters to fits to Equation 9.3 on IB for sample
E with 700 mV (closed symbols) and 400 mV (open symbols). Note that some error
bars are smaller than the points. The twist angle is ∂φ/∂IB ∼ 12°/A.
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Figure 10.4: Hysteresis loops for several different values of IB for sample F. They were
obtained with 0.75 V, 0.3 Hz triangle wave at T = 77 K. There is a vertical offset for
clarity and arrows mark direction of each loop. The twist angle is ∂φ/∂IB ∼ 5°/A.
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10.2 Temperature Dependence

In order to help understand the origin of slow VITS response, a temperature depen-

dent study was performed on sample G. This sample had a relatively short steel wire

(L ≈ 1 mm). This gives the sample a relatively large resonant frequency of 730 Hz

while limiting the magnitude of the applied external torque. This allows a larger

frequency window to be investigated without contributions from resonant effects. Al-

though the response could have been normalized to absolute units as samples E and

F were, this was not done and the results for sample G are presented in arbitrary

units.

The voltage dependence of the resistance and shear compliance at temperatures

of 90 K, 100 K, 110 K and 120 K for sample G are shown in Figure 10.5 a). As

the temperature increases, approaching TP = 220 K, the overall resistance of the

sample decreases as expected. In addition, CDW creep decreases allowing for VT to

be more clearly observed in the resistance data. However note that the depinning

voltage thresholds obtained from the resistance curves are still larger than the ones

from the shear compliance. The reason for this difference in thresholds obtained

from the resistance and shear compliance curve is due to phase slip at the contacts.

This phase slip is the potential difference necessary to convert the the quasi-particle

current at the contacts into the CDW current in the bulk of the crystal [87]. Since

elastic properties depend on only depinning in the bulk and not on the contacts, the

shear compliance provides a more accurate measurement for VT.

A consequence of using a smaller steel wire is the linear deflections of the end

of the wire will be smaller as well. This results in a decrease in the amplitude of

the output of the RF cavity. This decreases the signal to noise ratio which can

be seen in the slightly more noisy shear compliance data. From the bottom panel

of Figure 10.5 a) notice that within this noise the change in the shear compliance is
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approximately independent of temperature for T > 90 K. For large voltages (V = 300

mV) the magnitudes of the shear compliance change for all measured temperatures

are comparable. However the T = 90 K data has a weaker voltage dependence than

was observed at higher temperatures. The values for VT obtained for the different

temperatures are presented in Figure 10.7 b).

In Figure 10.5 b), the voltage dependence of the VITS response due to a 10 Hz

square wave being applied to the sample is presented. The in-phase and quadrature

are presented in the top and bottom panels respectively. This response is displayed

for the same four temperatures as the resistance and shear compliance in part a).

Notice that the onset voltage of this response (Von) is slightly smaller than VT which

is consistent with the other samples. The temperature dependence of Von can be

seen in Figure 10.7 b). One can see that the VITS response is speeding up as the

temperature is increased. Consider the quadrature response obtained at T = 120 K.

Notice that it has a peak at V ∼ 150 mV and a shoulder at V ∼ 200 mV. The increase

in both magnitude and the positions of these features implies that the response is

slowing down (i.e τ0 is increasing) as the temperature is lowered. For T = 90 K, the

response has slowed to the extent that these features are moving out of our voltage

window. For the responses obtained at T = 120 K and 110 K, the in-phase response

saturates at V ∼ 250 mV. As with the shear compliance, the slowing down of the VITS

response can also be seen in the weaker voltage dependence at lower temperatures.

Notice that as temperature is decreased, the saturation voltage increases along with

the amplitude of the torsional response.

From Figure 10.7 b), notice that VT and Von have a slight temperature depen-

dence. Therefore in making temperature dependent measurements it was necessary

to develop a voltage criterion that would drive the CDW with a fixed potential. It

was not clear whether Von or VT was the relevant threshold. This distinction is not

very relevant for T ≥ 90 K since (VT - Von) is approximately constant here. We
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Figure 10.5: a) Voltage dependence of resistance and shear compliance for temper-
atures of 90 K, 100 K, 110 K and 120 K of sample G. b) Voltage dependence of
the VITS response due to a 10 Hz square wave applied to the sample for the same
temperatures as in a).

then measured the frequency dependence of the torsional strain due to square wave

potentials being applied to the sample. The voltages used were: VT, Von + 50 mV,

VT + 50 mV, Von + 100 mV and VT + 100 mV. These measurements were made at

several different temperatures. Examples of this response is illustrated in Figure 10.6

for Vsquare = Von + 100 mV at temperatures of 90 K and 110 K. The increase in the

speed of the VITS signal with increasing temperature is also shown in the peak in

the quadrature response (open symbols) moving from f ∼ 1 Hz at T = 90 K to f ∼

50 Hz at T = 110 K. The curves in the figure are fits to Equation 9.3.

The temperature dependence of the parameters to the fits for several voltages is

presented in Figure 10.7 a). Notice that the amplitude of the VITS response for each
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Figure 10.6: Frequency dependence due to V = Von + 100 mV = 170 mV square
wave applied to the sample at T = 90 K and 110 K for sample G. The filled and open
symbols represent the in-phase and quadrature responses respectively. The curves
are fits to Equation 9.3.

voltage is roughly independent of temperature. This is consistent with the results of

Pokrovskii et. al. (Reference [96]). Also note that the time constant (τ0) decreases

with increasing temperature. Changing the temperature by ∆T = 30 K results in τ0

changing by approximately two orders of magnitude for a given voltage and by three

orders of magnitude when comparing the extremes in this temperature and voltage

window. The bottom panel displays the exponent (γ). Notice that at T = 120 K,

γ has a strong voltage dependence varying from γ ∼ 0.7 to γ ∼ 0.3. These values

correspond to a width in the time constant distribution peak of roughly one and five

decades respectively.
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Figure 10.7: The temperature dependence for sample G of a) parameters of fits to
Equation 9.3 b) square-wave and CDW onset voltages and c) the CDW current and
ICDWτ0. When not visible, the error bars are smaller than the symbols.

When the CDW is depinned it flows through the crystal carrying an additional

electrical current. Therefore the total current will be the sum of the ohmic term and

a component due to the CDW expressed as:

Itotal =
V

R0

+ ICDW (10.1)
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The temperature dependence of the CDW current (ICDW) is displayed in the top panel

of Figure 10.7 c). Notice that ICDW decreases by roughly two orders of magnitude

for each voltage in this temperature window. In comparison, the ohmic resistance

(R0) only drops by roughly a factor of three in this same window. Also note that the

lower panel shows the temperature dependence of the term ICDWτ0 which within the

uncertainty of the measurement is approximately independent of both voltage and

temperature. This suggests that τ0 primarily depends on ICDW with the following

relation:

τ0 ∝
1

ICDW
(10.2)

Unfortunately to date, no temperature dependent studies of the relaxation times

associated with longitudinal deformations of the CDW on TaS3 have been performed.

However such measurements have been performed on K0.3MoO3 using elecro-optic

techniques [97]. The dependence of this time constant on temperature and ICDW is

much weaker than the same dependencies of the time constant (τ0) associated with

the VITS response that we are observing in TaS3.

Copyright© John Nichols, 2012.
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Chapter 11 Modeling of VITS

11.0.1 Qualitative Modeling

It has been previously shown that in TaS3 voltage-induced deformations of the CDW

will have a hysteretic dependence on voltage similar to the hysteresis loops associated

with the VITS response [98, 99, 100, 92, 101]. Assuming that the VITS response is

coupled to the deformations in the CDW, the torsional response (ε) will obey the

following equation:

dε

dt
=
ε0(V )− ε

τ
(11.1)

Where the voltage dependent time constant is:

τ =


∞ V < VON

τ0 VON < V < VSAT

τ0(VSAT/V )6 V > VSAT

(11.2)

Notice that the infinite time constant for small voltages will inhibit the response and

τ was given the voltage dependence observed in sample C for large voltages. The

voltage dependent term of the strain will be:

ε0(V ) =


0 V < VON

(V − VON)/(VSAT − VON) VON < V < VSAT

1 V > VSAT

(11.3)

The strain can be simulated by plugging Equations 11.2 and 11.3 into Equation 11.1

and solving for ε while assuming VSAT = 1.5VON . Illustrated in Figure 11.1 is the

voltage dependence of the theoretical torsional strain for several different periods.

These curves exhibit the sluggish behavior observed in our experimental results. No-
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tice that these loops continue to narrow even for T� τ0. This is consistent with the

results in Figure 9.5 where even when T > τ0, the hysteresis loops to not have the

exact shape of the static hysteresis loops obtained on the same sample.

Figure 11.1: Simulated hysteresis loops from Equation 11.1 for four different periods.

11.0.2 Quantitative Modeling

Recall from Chapter 10 we proposed that the VITS response is due to some initial

twist being present in the sample. This could be due to either defects present in the

crystal or sample mounting. The initial twist from mounting could be due to not

perfectly attaching the steel wire allowing gravity to produce a torque or from being

twisted by motion due to the drying of the silver paint which makes the electrical

contact to each end of the crystal. Whether the initial twist is inherent in the crystal

or generated when mounting the sample, the wave vector will have an azimuthal
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component with the following form:

~q = q0(ẑ + βrφ̂) (11.4)

Figure 11.2: The alignment of the CDW wavefronts in an untwisted crystal due to
applied voltage for a) sample with CDWs that have never been depinned, b) samples
that have been above positive threshold and c) samples that have been below negative
threshold. d) The general voltage dependence of ∆q0(z).

where q0 is the wave vector when there is no initial twist, ẑ is a unit vector in the

longitudinal direction, φ̂ is a unit vector in the azimuthal direction, β = ∂φ/∂z and r
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is the distance from the center of the sample. For simplicity, a circular cross-section

is assumed. When a CDW is depinned, the wave fronts will compress near the more

positive contact and rarify near the other contact [98]. This effect will be modeled

by:

q0(z) = q00 + ∆q0(z), (11.5)

where q00 is the position and voltage independent component of the wave vector

and ∆q0(z) is the additional term that accounts for the relative motion of the wave

fronts. This motion for untwisted crystals is illustrated in Figure 11.2. Panel a)

displays a sample that has never had the CDW depinned (|V| < ±VT). If the voltage

is increased above the positive threshold (V > VT), the wave fronts will compress

near the positive contact as shown in panel b). The motion of these wave fronts has a

hysteretic dependence on voltage as shown in panel d). So the wave fronts will stay in

this configuration as long the voltage is never decreased below the negative threshold

(V < −VT). Once this occurs, the wavefronts will then shift so that they rarify

near this contact as illustrated in panel c). The wave fronts will then stay in this

state until the voltage is again increased above the positive threshold. This results in

∆q0(z) having a similar voltage dependence as is observed in the VITS response in

TaS3. This behavior of ∆q0(z) will produce a gradient in the pitch of the azimuthal

component of the CDW wave vector. In addition, ∆q0(z) has small non-hysteretic

changes near the electrodes [100, 97] which does not appear to he related to the VITS

response.

It has been shown that longitudinal strains in ∆q(z) can couple to the lattice

[81]. This will produce longitudinal stresses in the crystal lattice. This stress will

change the overall length of the crystal by ∆L/L ∼ 10−6. This is much smaller than

the VITS response which has an effective piezoelectric coefficient of ∼ 10−4 cm/V.

We suggest the reason the changes in length are so small is due to the changes is
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the wave vector (∆q0(z)). If ∆q0(z) were perfectly symmetric about the center of the

crystal (i.e. ∆q0(z) = - ∆q0(L−z)), then one half of the crystal will expand while the

other half will compress by the same amount. This will result in the overall length of

the crystal (L) remaining constant. However there is a slight asymmetry in ∆q0(z)

[82, 102] (i.e. ∆q0(z) ∼ - ∆q0(L− z)) (See Figure 7.6) resulting in the two halves of

the crystal compressing and expanding by slightly different amounts. This will yield

a small but finite length change [81, 103].

For a circular rod clamped at (z = 0) with a torque (T ) applied at some (z ≤ L),

the rod will twist by [104]:

φ =
Tz

IG
(11.6)

where G is the shear modulus and I = πR4/2 is the polar moment of inertial. The

torsional rigidity (κ) is the ratio of the applied torque and the twist angle [105] as

follows:

κ ≡ T

φ
(11.7)

=
π

2

GR4

z
(11.8)

∼ GR4

z
(11.9)

where this is an order of magnitude estimate so factors of ∼ 2 will be ignored.

One might assume that the torsional stress is proportional to β∆q0(z). However

if this were the case, there would be a sign inversion at the center of the crystal and

almost no net twist at the free end (∆φ(L) ∼ 0). It has been shown that the VITS

response grows as distance from the clamped end of the crystal increases [74]. This

results in a maximum twist angle at the free end (∆φmax ∼ ∆φ(L)). This behavior

will be exhibited if the torsional stress is proportional to ∂q/∂z. This condition will be

fulfilled if it is assumed that β∆q0(z) produces an external torque (η) on the sample
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that is resisted by the torsional rigidity. This torque can be obtained by integrating

over the moment arm as follows:

η(z) ∼ µ

q00

∫
dAr(βr∆q0) (11.10)

∼ µ

q00

(β∆q0)

∫ 2π

0

dφ

∫ R

0

rdrr2 (11.11)

∼ µ

q00

(β∆q0)(2π)
R4

4
(11.12)

∼ µ

q00

(R4β∆q0)
π

2
(11.13)

∼ µ

q00

(R4β∆q0) (11.14)

where µ is the trans-modulus that relates strains in the CDW to stresses within the

crystal lattice. Now filling in for the torsional rigidity:

η(z) ∼ µ

q00

zκ

G
(β∆q0) (11.15)

∴
η(z)

κ
∼ µzβ∆q0

Gq00

(11.16)

Now the total twist angle can be obtained by integrating ∂(η/κ)/∂z over the length

of the sample:

∂∆φ

∂z
∼ ∂(η/κ)

∂z
(11.17)

∼ ∂

∂z

(
µzβ∆q0

Gq00

)
(11.18)

∼ µβ

Gq00

∂

∂z
(z∆q0) (11.19)

∆φ ∼ µβ

Gq00

∫ L

0

dz
∂

∂z
(z∆q0) (11.20)

∴ ∆φ(L) ∼ µβL∆q0(L)

Gq00

(11.21)
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relaxation times associated with the VITS [17], the change in
shear modulus [6], and changes in qz [12], for three different
samples at T�80 K. As mentioned above, t0(DG) is associated
with the CDW wave vector responding to crystal strain, while
we associate t0(VITS) with the crystal strain responding to

voltage-induced changes in CDW wave vector. One would expect
these to be comparable, but as seen in the figure, while t0(DG)
becomes comparable to t0(Dqz) with increasing voltage, as
expected, t0(VITS) stays much larger. (In view of sample depen-
dent properties, it would be desirable to measure these time
constants on the same sample).

To begin understanding the sluggish VITS response, we have
measured the temperature/voltage dependence of t0(VITS) for
another sample. Between 90 K and 120 K, for which Von and VT are
fairly constant (see Fig. 5 inset), and for voltages between
VTþ50 mV and VTþ100 mV, we have found t0(VITS) to be
inversely proportional to the CDW current, as shown in Fig. 5.
(For a given voltage, however, t0(VITS) has a much stronger
temperature dependence than the low-field, VoVT, conductivity
[18]). This suggests that the voltage-induced torsional strain is
‘‘released’’ by CDW current, which in turn suggests that CDW
defects, such as domain walls, must be displaced before the
crystal strains.

In summary, we have found that the hysteretic voltage-
induced torsional strain depends strongly on applied torque, even
changing sign, and we suggest that it is associated with residual
torsional strains in the sample interacting with the hysteretic
CDW wave vector. However, the sluggishness of the response,
which seems correlated with the CDW current, also suggests that
the coupling of the torsional crystal strain to the changing CDW is
inhibited by CDW defects.

We thank V. Pokrovskii and D. Dominko for extremely valuable
discussions and R. Thorne for providing samples. This research
was supported by the U.S. National Science Foundation, Grants
DMR-0800367 and EPS-0814194.
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Recall for sample F that the hysteresis loop was fully suppressed for IB = 0.8 A.

This corresponds to an initial twist of βL ∼ 4°. The shear compliance of TaS3 is G

∼ 5 GPa [80]. Assuming the azimuthal trans-modulus |µ| ∼ 10 GPa is equal to the

longitudinal trans-modulus [103] and a typical VITS response of ∆φ(L) ∼ 0.1°, the

relative shift in the wave vector is calculated to be ∆q0(L)/q00 ∼ 3×10−3. This value

is comparable to the experimental result measured on NbSe3 [98, 106].

The main question left open is why is the VITS response so slow. Consider the

voltage dependence of τ0 for sample D which can be seen in Figure 11.3 along with

the time constants associated with changes in the shear modulus (τ(∆G) = τ(1/∆J))

[87] and changes in the longitudinal component of the wave vector (τ(∆qz)) [92]

obtained with three different samples at approximately 80 K. Our results suggests

that the speed of the VITS response is determined by ICDW, but it is not clear if

the proportionality constant if significant. Since the VITS response is attributed to
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voltage induced changes in the CDW wave vector coupling to the lattice and the

elastic anomaly in the shear compliance is due to the CDW wave vector adjusting to

the crystal strain, the time constants associated with the two processes are expected

to be comparable. For large voltages, the time constants associated with changes

in the shear compliance and the longitudinal wave vector are in fact comparable.

However, the time constant associated with VITS surprisingly remains roughly two

orders of magnitude larger at large voltages. This suggests that in order for ICDW

to create the strains in the crystal lattice, it must release defects such as dislocation

lines.

Copyright© John Nichols, 2012.
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Chapter 12 Conclusions

In the SOC induced Mott insulator Sr2IrO4, we have observed high resolution to-

pographic images of its surface resolving individual atomic steps. With tunneling

spectroscopy at T = 77 K, we have measured the Mott gap to be 2∆ ∼ 615 meV. In

addition, at this temperature we observed an inelastic loss feature at approximately

125 meV attributed to a single magnon excitation. At T = 4.2 K, additional low

energy features were observed at 35 meV and 12 meV and are believed to be due to

the additional magnetic ordering which occurs below TN = 240 K.

We have designed and constructed a new STM with ultra-high resolution capa-

ble of traversing macroscopic distances in two dimensions. It is sensitive enough to

produce atomic resolution images of HOPG. In addition to being able to approach

samples as any STM must do, it is also capable of traversing the entire width of our

sample holders which have a diameter of 4 mm. It can produce numerous tunnel

junctions without breaking the vacuum which makes it ideal for finding microscop-

ically small samples such as graphene. In addition it can locate tiny features on a

sample surface such as the interface between two dissimilar materials. It has proven

to work at T = 77 K by successfully approaching and imaging different sites on a

gold surface. It is the ideal tool for any experiment requiring the sensitivity of an

STM at sites separated by macroscopic distances on the material of interest.

We have observed the piezo-like VITS in single crystals of TaS3. We have observed

it to have an amplitude of roughly 0.1°. It is a very sluggish response with relax-

ation time constants that exceed 1 s near the CDW depinning threshold. Applying

an external torque not only changes the magnitude of the VITS response but also

the direction the crystals twist. The VITS response speeds up with increasing tem-

perature and is related to the CDW current. We have shown through experimental
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results and theoretical modeling that the VITS response could be due to an initial

twist being present in the material. It is hopeful that similar materials will be used

as microscopic torsional actuators.

Copyright© John Nichols, 2012.
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