11,754 research outputs found

    Methods Matter: Beating the Backward Clock

    Get PDF
    In “Beat the (Backward) Clock,” we argued that John Williams and Neil Sinhababu’s Backward Clock Case fails to be a counterexample to Robert Nozick’s or Fred Dretske’s Theories of Knowledge. Williams’ reply to our paper, “There’s Nothing to Beat a Backward Clock: A Rejoinder to Adams, Barker and Clarke,” is a further attempt to defend their counterexample against a range of objections. In this paper, we argue that, despite the number and length of footnotes, Williams is still wrong

    Beat the (Backward) Clock

    Get PDF
    In a recent very interesting and important challenge to tracking theories of knowledge, Williams & Sinhababu claim to have devised a counter-example to tracking theories of knowledge of a sort that escapes the defense of those theories by Adams & Clarke. In this paper we will explain why this is not true. Tracking theories are not undermined by the example of the backward clock, as interesting as the case is

    Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    Get PDF
    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation

    Morphology of Hydrodynamic Winds: A Study of Planetary Winds in Stellar Environments

    Get PDF
    Bathed in intense ionizing radiation, close-in gaseous planets undergo hydrodynamic atmospheric escape, which ejects the upper extent of their atmospheres into the interplanetary medium. Ultraviolet detections of escaping gas around transiting planets corroborate such a framework. Exposed to the stellar environment, the outflow is shaped by its interaction with the stellar wind and by the planet's orbit. We model these effects using Athena to perform 3-D radiative-hydrodynamic simulations of tidally-locked hydrogen atmospheres receiving large amounts of ionizing extreme-ultraviolet flux in various stellar environments for the low-magnetic-field case. Through a step-by-step exploration of orbital and stellar wind effects on the planetary outflow, we find three structurally distinct stellar wind regimes: weak, intermediate, and strong. We perform synthetic Lyman-α\alpha observations and find unique observational signatures for each regime. A weak stellar wind—\textrm{---}which cannot confine the planetary outflow, leading to a torus of material around the star—\textrm{---}has a pre-transit, red-shifted dayside arm and a slightly redward-skewed spectrum during transit. The intermediate regime truncates the dayside outflow at large distances from the planet and causes periodic disruptions of the outflow, producing observational signatures that mimic a double transit. The first of these dips is blue-shifted and precedes the optical transit. Finally, strong stellar winds completely confine the outflow into a cometary tail and accelerate the outflow outwards, producing large blue-shifted signals post-transit. Across all three regimes, large signals occur far outside of transit, offering motivation to continue ultraviolet observations outside of direct transit.Comment: 33 pages, 21 figures (7 of which have embedded movies viewable with Adobe Acrobat Pro), Submitted to Ap

    Narrow-line Laser Cooling by Adiabatic Transfer

    Get PDF
    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle's motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5~kHz linewidth 1^1S0_0 to 3^3P1_1 transition in 88^{88}Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.Comment: 5 pages, 4 figure

    I\u27ll Be Your Valentine

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4135/thumbnail.jp

    You Are My Rain-Beau

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2784/thumbnail.jp

    Come To Bohemia

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3861/thumbnail.jp

    Sweetheart Lane

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2562/thumbnail.jp
    • …
    corecore