247 research outputs found
Coronagraphic observations and analyses of the ultraviolet solar corona
This status report for the period 1 October 1992 to 30 September 1994 covers the final preparation and first observations with the Spartan Ultraviolet Coronal Spectrometer on Spartan 201-1, and the preparation and second flight for Spartan 201-2. Both flights were fully successful and resulted in high quality spectroscopic observations of the extended solar corona out to 3.5 solar radii from Sun-center. The primary focus of this report is the results from Spartan 201-1. There is also a brief description of the evaluation of the quick look data from the second flight. Highlights from the first flight include a discovery that the proton velocity distribution in coronal holes is complex and consists of a central core with elevated high velocity wings compared to a Gaussian shape
The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona
Recent observations of the spectral line profiles and intensity ratio of the
O VI 1032 {\AA} and 1037.6 {\AA} doublet by the Ultraviolet Coronagraph
Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO), made in
coronal holes below 3.5 , provide evidence for Doppler dimming of the O VI
1037.6 {\AA} line and pumping by the chromospheric C II 1037.0182 {\AA} line.
Evidence for a significant kinetic temperature anisotropy of O ions was
also derived from these observations. We show in this Letter how the component
of the kinetic temperature in the direction perpendicular to the magnetic
field, for both isotropic and anisotropic temperature distributions, affects
both the amount of Doppler dimming and pumping. Taking this component into
account, we further show that the observation that the O VI doublet intensity
ratio is less than unity can be accounted for only if pumping by C II 1036.3367
{\AA} in addition to C II 1037.0182 {\AA} is in effect. The inclusion of the C
II 1036.3367 {\AA} pumping implies that the speed of the O ions can
reach 400 km/s around 3 which is significantly higher than the reported
UVCS values for atomic hydrogen in polar coronal holes. These results imply
that oxygen ions flow much faster than protons at that heliocentric distance.Comment: 9 pages, 3 figure
Free-flight Performance of a Rocket-boosted, Air-launched 16-inch-diameter Ram-jet Engine at Mach Numbers up to 2.20
The investigation of air-launched ram-jet engines has been extended to include a study of models with a nominal design free-stream Mach number of 2.40. These models require auxiliary thrust in order to attain a flight speed at which the ram jet becomes self-accelerating. A rocket-boosting technique for providing this auxiliary thrust is described and time histories of two rocket-boosted ram-jet flights are presented. In one flight, the model attained a maximum Mach number of 2.20 before a fuel system failure resulted in the destruction of the engine. Performance data for this model are presented in terms of thrust and drag coefficients, diffuser pressure recovery, mass-flow ratio, combustion efficiency, specific fuel consumption, and over-all engine efficiency
Knockdown of piRNA pathway proteins results in enhanced Semliki forest virus production in mosquito cells
The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production
Changes in PM2.5 Peat Combustion Source Profiles with Atmospheric Aging in an Oxidation Flow Reactor
Smoke from laboratory chamber burning of peat fuels from Russia, Siberia, the USA (Alaska and Florida), and Malaysia representing boreal, temperate, subtropical, and tropical regions was sampled before and after passing through a potential-aerosol-mass oxidation flow reactor (PAM-OFR) to simulate intermediately aged (∼2 d) and well-aged (∼7 d) source profiles. Species abundances in PM2.5 between aged and fresh profiles varied by several orders of magnitude with two distinguishable clusters, centered around 0.1 % for reactive and ionic species and centered around 10 % for carbon. Organic carbon (OC) accounted for 58 %–85 % of PM2.5 mass in fresh profiles with low elemental carbon (EC) abundances (0.67 %–4.4 %). OC abundances decreased by 20 %–33 % for well-aged profiles, with reductions of 3 %–14 % for the volatile OC fractions (e.g., OC1 and OC2, thermally evolved at 140 and 280 ∘C). Ratios of organic matter (OM) to OC abundances increased by 12 %–19 % from intermediately aged to well-aged smoke. Ratios of ammonia (NH3) to PM2.5 decreased after intermediate aging. Well-aged NH+4 and NO−3 abundances increased to 7 %–8 % of PM2.5 mass, associated with decreases in NH3, low-temperature OC, and levoglucosan abundances for Siberia, Alaska, and Everglades (Florida) peats. Elevated levoglucosan was found for Russian peats, accounting for 35 %–39 % and 20 %–25 % of PM2.5 mass for fresh and aged profiles, respectively. The water-soluble organic carbon (WSOC) fractions of PM2.5 were over 2-fold higher in fresh Russian peat (37.0±2.7 %) than in Malaysian (14.6±0.9 %) peat. While Russian peat OC emissions were largely water-soluble, Malaysian peat emissions were mostly water-insoluble, with WSOC ∕ OC ratios of 0.59–0.71 and 0.18–0.40, respectively. This study shows significant differences between fresh and aged peat combustion profiles among the four biomes that can be used to establish speciated emission inventories for atmospheric modeling and receptor model source apportionment. A sufficient aging time (∼7 d) is needed to allow gas-to-particle partitioning of semi-volatilized species, gas-phase oxidation, and particle volatilization to achieve representative source profiles for regional-scale source apportionment
Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona
We present a detailed analysis of oxygen ion velocity distributions in the
extended solar corona, based on observations made with the Ultraviolet
Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at
solar minimum are known to exhibit broad line widths and unusual intensity
ratios of the O VI 1032, 1037 emission line doublet. The traditional
interpretation of these features has been that oxygen ions have a strong
temperature anisotropy, with the temperature perpendicular to the magnetic
field being much larger than the temperature parallel to the field. However,
recent work by Raouafi and Solanki suggested that it may be possible to model
the observations using an isotropic velocity distribution. In this paper we
analyze an expanded data set to show that the original interpretation of an
anisotropic distribution is the only one that is fully consistent with the
observations. It is necessary to search the full range of ion plasma parameters
to determine the values with the highest probability of agreement with the UVCS
data. The derived ion outflow speeds and perpendicular kinetic temperatures are
consistent with earlier results, and there continues to be strong evidence for
preferential ion heating and acceleration with respect to hydrogen. At
heliocentric heights above 2.1 solar radii, every UVCS data point is more
consistent with an anisotropic distribution than with an isotropic
distribution. At heights above 3 solar radii, the exact probability of isotropy
depends on the electron density chosen to simulate the line-of-sight
distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May
20, 2008
Physical Structure of a Coronal Streamer in the Closed-Field Region as Observed from UVCS/SOHO and SXT/Yohkoh
We analyze a coronal helmet streamer observed on 1996 July 25 using instruments aboard two solar spacecraft, the Ultraviolet Coronagraph Spectrometer (UVCS) on board Solar and Heliospheric Observatory (SOHO) and the Soft X-Ray Telescope (SXT) on board Yohkoh. We derive temperatures and electron densities at 1.15 R☉ from SXT/Yohkoh observations. At this height, the streamer temperature is about log T (K) = 6.28 ± 0.05, and the electron density is about log ne(cm-3) = 8.09 ± 0.26, while at 1.5 R☉ a temperature of log T (K) = 6.2 and a density of log ne(cm-3) = 7.1 are obtained by UVCS/SOHO. Within the measurement uncertainty this suggests a constant temperature from the base of the streamer to 1.5 R☉. Electron density measurements suggest that the gas in the streamer core is close to hydrostatic equilibrium. Comparison with potential field models for the magnetic field suggests a plasma β larger than 1 in the closed-field region in the streamer. In deriving electron densities and temperatures from the SXT/Yohkoh data, we include the effects of abundance anomalies on the SXT filter response. We use the elemental abundances derived from the UVCS/SOHO observations to estimate the first ionization potential and gravitational settling effects. We then give the set of abundances for the solar corona, which agrees with our observations. In addition, we analyzed the SXT data from 6 consecutive days. We found that from 1996 July 22 to July 27, the physical properties of the streamer are nearly constant. We conclude that we may be observing the same loop system over 6 days
Solar Wind at 6.8 Solar Radii from UVCS Observation of Comet C/1996Y1
The comet C/1996Y1, a member of the Kreutz family of Sun-grazing comets, was observed with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO) satellite. The Lyα line profile and spatial distribution are interpreted in terms of the theory of bow shocks driven by mass-loading. At the time of the observation, the comet was 6.8 R☉ from the Sun in a region of high-speed wind, a region difficult to observe directly with the SOHO instruments but an important region for testing models of solar wind acceleration and heating. We find a solar wind speed below 640 km s-1 and a constraint on the combination of solar wind speed and proton temperature. The total energy per proton at 6.8 R☉ is 50%-75% of the energy at 1 AU, indicating that significant heating occurs at larger radii. The centroid and width of the Lyα line generally confirm the predictions of models of the cometary bow shock driven by mass-loading as cometary molecules are ionized and swept up in the solar wind. We estimate an outgassing rate of 20 kg s-1, which implies an active area of the nucleus only about 6.7 m in diameter at 6.8 R☉. This is likely to be the size of the nucleus, because any inert mantle would have probably been blown off during the approach to the Sun
Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil
Background:
The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions.
Methodology/Principal findings:
We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action.
Conclusions/Significance:
The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions
Gene silencing in tick cell lines using small interfering or long double-stranded RNA
Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system
- …