125 research outputs found

    Skolem Functions for Factored Formulas

    Full text link
    Given a propositional formula F(x,y), a Skolem function for x is a function \Psi(y), such that substituting \Psi(y) for x in F gives a formula semantically equivalent to \exists F. Automatically generating Skolem functions is of significant interest in several applications including certified QBF solving, finding strategies of players in games, synthesising circuits and bit-vector programs from specifications, disjunctive decomposition of sequential circuits etc. In many such applications, F is given as a conjunction of factors, each of which depends on a small subset of variables. Existing algorithms for Skolem function generation ignore any such factored form and treat F as a monolithic function. This presents scalability hurdles in medium to large problem instances. In this paper, we argue that exploiting the factored form of F can give significant performance improvements in practice when computing Skolem functions. We present a new CEGAR style algorithm for generating Skolem functions from factored propositional formulas. In contrast to earlier work, our algorithm neither requires a proof of QBF satisfiability nor uses composition of monolithic conjunctions of factors. We show experimentally that our algorithm generates smaller Skolem functions and outperforms state-of-the-art approaches on several large benchmarks.Comment: Full version of FMCAD 2015 conference publicatio

    High ventilatory inefficiency with low psoas muscle index is associated with an increase in the risk of 3-year mortality after liver resection and pancreaticoduodenectomy

    Get PDF
    Body composition assessed with computed tomography (CT)1 images and cardiopulmonary exercise fitness (CPET)2 of liver resection or pancreaticoduodenectomy patients show promising value to prognose surgical outcomes. The combination of CT and CPET may better predict patients’ survival rate after surgery than these techniques independently. This is a retrospective study that collected abdominal CT images and CPET measures of liver resection or pancreaticoduodenectomy patients from the CPET NHS Manchester Foundation Trust research databases. Abdominal CT images were segmented based on Hounsfield Units and CPET was performed until volitional exhaustion. Parameters derived from abdominal CT image analysis at L3 L4 were psoas muscle index (P index), calculated as psoas muscle cross-sectional area (tissue at 29 to 150 Hounsfield units [HU])/height2, and psoas intramuscular adipose tissue (tissue at 190 to -30 HU). CPET parameters were maximum volume of oxygen consumption, anaerobic threshold and ventilatory equivalents of CO2 (VE/VCO2 slope). Cox regression identified CT- and CPET derived parameters with a significant relationship with 1- and 3-year survival rate. After, Patients were classified into two groups based on the median value of the CT or CPET parameters related with 1- or 3-year survival rate. The 1- and 3-year mortality Hazard Ratios (HRs) of the two groups were calculated using Cox regression. Overall, 89 patients (57 men and 32 women, 70 [64-74] years old) were included. P index (HR [95%CI]: 0.830 [0.699-0.984], p=0.032) and VE/VCO2 slope (HR [95%CI]: 1.041 [1.012-1.070], p32.1) showed a higher risk of 3-year mortality (HR [95%CI]: 2.471 [1.292-4.723], p<0.01). The combined used of CT images and CPET analysis better prognosed the risk of 3 year mortality after pancreaticoduodenectomy and liver resection than the use of CT and CPET independently

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore