193 research outputs found

    Intramolecular halogen-halogen bonds?

    Get PDF
    By analysing the properties of the electron density in the structurally simple perhalogenated ethanes, X3C–CY3 (X, Y = F, Cl), a previously overlooked non-covalent attraction between halogens attached to opposite carbon atoms is found. Quantum chemical calculations extrapolated towards the full solution of the Schrödinger equation reveal the complex nature of the interaction. When at least one of the halogens is a chlorine, the strength of the interaction is comparable to that of hydrogen bonds. Further analysis shows that the bond character is quite different from standard non-covalent halogen bonds and hydrogen bonds; no bond critical points are found between the halogens, and the σ-holes of the halogens are not utilised for bonding. Thus, the nature of the intramolecular halogen···halogen bonding studied here appears to be of an unusually strong van der Waals type.Peer reviewe

    Magnetically induced ring currents in naphthalene-fused heteroporphyrinoids

    Get PDF
    The magnetically induced current density of an intriguing naphthalene-fused heteroporphyrin has been studied, using the quantum-chemical, gauge-including magnetically induced currents (GIMIC) method. The ring-current strengths and current-density pathways for the heteroporphyrin, its Pd complex, and the analogous quinoline-fused heteroporphyrin provide detailed information about their aromatic properties. The three porphyrinoids have similar current-density pathways and are almost as aromatic as free-base porphyrin. Notably, we show that the global ring current makes a branch at three specific points. Thus, the global current is composed of a total of eight pathways that include 22 pi-electrons, with no contributions from 18-electron pathways.Peer reviewe

    New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling

    Get PDF
    Antibody-drug conjugates (ADCs) are emerging as a promising class of selective drug delivery systems in the battle against cancer and other diseases. The auristatins monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) appear as the cytotoxic drug in almost half of the state-of-the-art ADCs on the market or in late stage clinical trials. Here, we present the first complete NMR spectroscopic characterisation of these challenging molecules, and investigate their structural properties by a combined NMR and quantum chemical modelling approach. We find that in solution, half of the drug molecules are locked in an inactive conformation, severely decreasing their efficiency, and potentially increasing the risk of side-effects. Furthermore, we identify sites susceptible to future modification, in order to potentially improve the performance of these drugs.Peer reviewe

    Change in electron and spin density upon electron transfer to haem

    Get PDF
    AbstractHaems are the cofactors of cytochromes and important catalysts of biological electron transfer. They are composed of a planar porphyrin structure with iron coordinated at the centre. It is known from spectroscopy that ferric low-spin haem has one unpaired electron at the iron, and that this spin is paired as the haem receives an electron upon reduction (I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummins Publ. Co., Menlo Park, CA, 1986, pp. 165–170; H.M. Goff, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part I, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 237–281; G. Palmer, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part II, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 43–88). Here we show by quantum chemical calculations on a haem a model that upon reduction the spin pairing at the iron is accompanied by effective delocalisation of electrons from the iron towards the periphery of the porphyrin ring, including its substituents. The change of charge of the iron atom is only approx. 0.1 electrons, despite the unit difference in formal oxidation state. Extensive charge delocalisation on reduction is important in order for the haem to be accommodated in the low dielectric of a protein, and may have impact on the distance dependence of the rates of electron transfer. The lost individuality of the electron added to the haem on reduction is another example of the importance of quantum mechanical effects in biological systems

    Cost-Estimation in Construction: BIM versus Total BIM

    Get PDF
    Implementing Building Information Modelling (BIM) has been promoted to address cost overrun issues in the construction industry by improving the efficiency and quality of cost-estimation processes. Recently, the ‘Total BIM’ concept has emerged in Scandinavia, where the BIM is the legally binding construction document, 2Ddrawings are excluded, and stricter BIM requirements are implemented. This paper highlights, explores issues, challenges, and opportunities within the cost-estimation process. Ten interviews were conducted with participants from traditional projects, involving the parallel use of BIM and traditional construction documents. An indepth investigation of a ‘Total BIM’ project was also performed. Findings show that even in projects where BIM is present, traditional 2D-based methods were still used for cost-estimation due to a BIM\u27s unclear legal status and lack of trust in BIM. ‘Total BIM’ may reduce cost estimation time by up to 90%, but issues regarding training, data and information management and education must be addressed

    Core-Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation

    Get PDF
    Spontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of H2O molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites. A single layer of H2O molecules, condensed between large and small gold nanoparticles, stabilizes positioning of nanoparticles with respect to one another during milliseconds of the synthesis time. The lack of isolated small gold nanoparticles on the substrate is explained by Brownian motion that is significantly broader for small-size particles. It is inferred that H2O as an admixture in the inert gas condensation opens up possibilities of controlling the final configuration of the different noble metal nanoparticles.Peer reviewe

    Dualities in persistent (co)homology

    Full text link
    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm.Comment: 16 pages, 3 figures, submitted to the Inverse Problems special issue on Topological Data Analysi

    Control and femtosecond time-resolved imaging of torsion in a chiral molecule

    Full text link
    We study how the combination of long and short laser pulses, can be used to induce torsion in an axially chiral biphenyl derivative (3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the molecular rotational periods, elliptically polarized laser pulse produces 3D alignment of the molecules, and a linearly polarized short pulse initiates torsion about the stereogenic axis. The torsional motion is monitored in real-time by measuring the dihedral angle using femtosecond time-resolved Coulomb explosion imaging. Within the first 4 picoseconds, torsion occurs with a period of 1.25 picoseconds and an amplitude of 3 degrees in excellent agreement with theoretical calculations. At larger times the quantum states of the molecules describing the torsional motion dephase and an almost isotropic distribution of the dihedral angle is measured. We demonstrate an original application of covariance analysis of two-dimensional ion images to reveal strong correlations between specific ejected ionic fragments from Coulomb explosion. This technique strengthens our interpretation of the experimental data.Comment: 11 pages, 9 figure

    Terminal Electron–Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I

    Get PDF
    Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.Peer reviewe

    Directional scattering and multipolar contributions to optical forces on silicon nanoparticles in focused laser beams

    Get PDF
    Nanoparticles made of high index dielectric materials have seen a surge of interest and have been proposed for various applications, such as metalenses, light harvesting and directional scattering. With the advent of fabrication techniques enabling colloidal suspensions, the prospects of optical manipulation of such nanoparticles becomes paramount. High index nanoparticles support electric and magnetic multipolar responses in the visible regime and interference between such modes can give rise to highly directional scattering, in particular a cancellation of back-scattered radiation at the first Kerker condition. Here we present a study of the optical forces on silicon nanoparticles in the visible and near infrared calculated using the transfer matrix method. The zero-backscattering Kerker condition is investigated as an avenue to reduce radiation pressure in an optical trap. We find that while asymmetric scattering does reduce the radiation pressure, the main determining factor of trap stability is the increased particle response near the geometric resonances. The trap stability for non-spherical silicon nanoparticles is also investigated and we find that ellipsoidal deformation of spheres enables trapping of slightly larger particles
    • …
    corecore