44 research outputs found

    Genome-wide analysis reveals no evidence of trans chromosomal regulation of mammalian immune development.

    Get PDF
    It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions

    Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.

    Get PDF
    Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naΓ―ve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance

    The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

    Full text link
    Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.Comment: Technical report of BraSy

    Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways

    Get PDF
    Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources –including glucose– in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung

    The role of Drosha, Dicer and microRNAs in the development of dendritic cells

    No full text
    Β© 2014 Dr. Timothy Mathew JohansonDrosha and Dicer are ribonuclease III enzymes required for the biogenesis of microRNAs. microRNAs are a family of small RNAs that regulate gene expression by targeting messenger RNAs for translational repression and ultimately degradation. Although it is known that Drosha, Dicer, and microRNAs have many important functions within the immune system, their roles in the development of dendritic cells (DCs) remains unclear. To determine which microRNAs may be important during DC development we compile a comprehensive and quantitative resource of microRNA expression during DC development. This microRNA expression atlas provides a valuable resource for the study of microRNAs in DC development and function. Furthermore, using a Tamoxifen inducible deletion system we show that deletion of either Drosha or Dicer impairs DC development. The fact that deficiency in either Drosha or Dicer impairs DC development suggests that microRNAs are involved in DC development. However, Drosha deficiency has a more severe impact on DC development than Dicer deficiency. This difference suggests an additional role for Drosha during DC development, independent of microRNAs. Here we elucidate the molecular mechanism underlying the microRNA-independent impact of Drosha deletion. As such, we identify 9 messenger RNAs upregulated in Drosha deficient DC progenitors, independently of microRNAs. Using retroviral transduction we demonstrate that overexpression of two of these transcripts, Myl9 and 2610318N02Rik, can substantially recapitulate the reduction in in vitro and in vivo DC development observed after Drosha deletion. Furthermore, we identify the mechanism of Drosha regulation of Myl9 and 2610318N02Rik by demonstrating Drosha-dependent cleavage of both transcripts in DC progenitors. Thus part of the reduction in the development of Drosha deficient DCs is likely due to the derepression and accumulation of Myl9 and 2610318N02Rik in early DC progenitors. Thus this thesis characterizes the first identified miRNA-independent function of Drosha, or any RNase enzyme, during haematopoiesis

    MiMIC analysis reveals an isoform specific role for Drosophila Musashi in follicle stem cell maintenance and escort cell function

    No full text
    The Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation

    Drosophila Rbp6 is an orthologue of vertebrate Msi-1 and Msi-2, but does not function redundantly with dMsi to regulate germline stem cell behaviour

    Get PDF
    The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a second Drosophila Msi family member, Rbp6, which shares more amino acid identity with vertebrate Msi-1 and Msi-2 than dMsi. We generated an antibody that detects most Rbp6 splice isoforms and show that Rbp6 is expressed in multiple tissues throughout development. However, Rbp6 deletion mutants generated in this study are viable and fertile, and show only minor defects. We used Drosophila spermatogonial germline stem cells (GSC’s) as a model to test whether Drosophila Msi proteins function redundantly to regulate stem cell behaviour. However, like vertebrate Msi-1 and Msi-2, Rbp6 and Msi do not appear to be co-expressed in spermatogenic GSC’s and do not function co-operatively in the regulation of GSC maintenance. Thus while two Msi family members are present in Drosophila, the function of the family members have diverged

    Genome-wide analysis reveals no evidence of trans chromosomal regulation of mammalian immune development.

    Get PDF
    It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions

    PREFERENCE FOR GAMMA-HYDROXYBUTYRATE (GHB) IN CURRENT USERS

    No full text
    Gamma-hydroxybutyrate (GHB) is a drug with significant abuse potential. The present study aimed to assess the relative value of escalating doses of GHB to current GHB users via the Multiple Choice Procedure (MCP), and to validate that the dose rated highest with the MCP would be self-administered at a greater rate than placebo. Participants were 5 current GHB users who were not currently trying to stop using GHB. To examine the value of escalating doses of GHB, the following doses of GHB were used: 0 (placebo), 12.5, 25, 37.5, and 50Β mg/kg. Participants typically assigned higher doses of GHB had higher crossover points on the MCP. During choice sessions, participants made repeated choices between administering GHB, placebo or nothing. All participants selected GHB exclusively (5 out of 5 instances) except for one participant who selected GHB on 4 out of 5 instances, thus 96% (i.e., 24/25) of choices were for active GHB. Based on these data, GHB appears likely to function as a dose-dependent reinforcer for humans based on our sample
    corecore