23 research outputs found

    WingSegment: A Computer Vision‐Based Hybrid Approach for Insect Wing Image Segmentation and 3D Printing

    Get PDF
    This article introduces WingSegment, a MATLAB app-designed tool employing a hybrid approach of computer vision and graph theory for precise insect wing image segmentation. WingSegment detects cells, junctions, Pterostigma, and venation patterns, measuring geometric features and generating Voronoi patterns. The tool utilizes region-growing, thinning, and Dijkstra's algorithms for boundary detection, junction identification, and vein path extraction. It provides histograms and box plots of geometric features, facilitating comprehensive wing analysis. WingSegment's efficiency is validated through comparisons with established tools and manual measurements, demonstrating accurate results. The tool further enables exporting detected boundaries as FreeCAD macro files for 3D modeling and printing, supporting finite element analysis. Beyond advancing insect wing morphology understanding, WingSegment holds broader implications for diverse planar structures, including leaves and geocells. This tool not only enhances automated geometric analysis and 3D model generation in insect wing studies but also contributes to the broader advancement of analysis, 3D printing, and modeling technologies across various planar structures

    Magnetic induction processes in Hot Jupiters, application to KELT-9b

    Get PDF
    The small semi-major axes of Hot Jupiters lead to high atmospheric temperatures of up to several thousand Kelvin. Under these conditions, thermally ionised metals provide a rich source of charged particles and thus build up a sizeable electrical conductivity. Subsequent electromagnetic effects, such as the induction of electric currents, Ohmic heating, magnetic drag, or the weakening of zonal winds have thus far been considered mainly in the framework of a linear, steady-state model of induction. For Hot Jupiters with an equilibrium temperature Teq>1500T_{eq} > 1500 K, the induction of atmospheric magnetic fields is a runaway process that can only be stopped by non-linear feedback. For example, the back-reaction of the magnetic field onto the flow via the Lorentz force or the occurrence of magnetic instabilities. Moreover, we discuss the possibility of self-excited atmospheric dynamos. Our results suggest that the induced atmospheric magnetic fields and electric currents become independent of the electrical conductivity and the internal field, but instead are limited by the planetary rotation rate and wind speed. As an explicit example, we characterise the induction process for the hottest exoplanet, KELT-9b by calculating the electrical conductivity along atmospheric PTP-T-profiles for the day- and nightside. Despite the temperature varying between 3000 K and 4500 K, the resulting electrical conductivity attains an elevated value of roughly 1 S/m throughout the atmosphere. The induced magnetic fields are predominately horizontal and might reach up to a saturation field strength of 400 mT, exceeding the internal field by two orders of magnitude

    On the problem of supersonic gas flow in two-dimensional channel with the oscillating upper wall

    Get PDF
    In the present paper we solve the problem of supersonic gas flow in two-dimensional channel with the moving upper wall making oscillations according to the harmonic law. In order to get a numerical solution for gas dynamics equations we have implemented a difference scheme with space and time approximation of the first order and one with space approximation of the second order. Depending on a type of harmonic law and initial gas inflow conditions, the peculiarities of angle-shock wave propagation in moving curvilinear domains have been investigated. It has been determined that the increase of oscillation amplitude causes the increase of shock wave intensity. It has been shown that under particular oscillation amplitude the moving wall has practically no effect on the flow within the domain

    Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the <it>Xiphophorus </it>melanoma model system, a mutated version of the EGF receptor Xmrk (<it>Xiphophorus </it>melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.</p> <p>Methods</p> <p>Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene <it>FOSL1 </it>was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.</p> <p>Results</p> <p>Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (<it>Fosl1</it>), early growth response 1 (<it>Egr1</it>), osteopontin (<it>Opn</it>), insulin-like growth factor binding protein 3 (<it>Igfbp3</it>), dual-specificity phosphatase 4 (<it>Dusp4</it>), and tumor-associated antigen L6 (<it>Taal6</it>). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that <it>FOSL1</it>, <it>OPN</it>, <it>IGFBP3</it>, <it>DUSP4</it>, and <it>TAAL6 </it>also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of <it>FOSL1 </it>in human melanoma cell lines reduced their proliferation and migration.</p> <p>Conclusion</p> <p>Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.</p

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion

    Supplementary files for "WingSegment: A Computer Vision-Based Hybrid Approach for Insect Wing Image Segmentation and 3D Printing"

    No full text
    &lt;p&gt;WingSegment combines computer vision and graph theory to segment images of insect wings. The algorithm is supported by a user-friendly graphical interface created using Matlab App-designer. It allows for the identification of cells, junctions, Pterostigma, and venation patterns in insect wings. WingSegment employs region-growing, thinning, and Dijkstra&#39;s algorithms for boundary detection, junction identification, and vein path extraction. Additionally, it calculates geometric features such as the area, length, and circularity of cells, as well as the length of veins. The algorithm also generates histograms and box plots to visualize the measured geometric features. By utilizing cell centroids, WingSegment creates a Voronoi pattern on the wing. Furthermore, the detected boundaries can be exported as FreeCAD macro files, facilitating 3D modeling and further analysis. The accuracy and efficiency of WingSegment are validated through comparisons with established software tools and manual measurements, demonstrating its effectiveness. The results exhibit precise wing segmentation and enable in-depth analysis of wing properties. WingSegment contributes to the advancement of knowledge in insect wing morphology and its applications across various fields.&lt;/p&gt

    Supplementary Material: Advanced morphological analysis of insect wings through a hybrid computer vision and maze-solving approach

    No full text
    WingSegment combines computer vision and graph theory to segment images of insect wings. The algorithm is supported by a user-friendly graphical interface created using Matlab App-designer. It allows for the identification of cells, junctions, Pterostigma, and venation patterns in insect wings. WingSegment employs region-growing, thinning, and Dijkstra's algorithms for boundary detection, junction identification, and vein path extraction. Additionally, it calculates geometric features such as the area, length, and circularity of cells, as well as the length of veins. The algorithm also generates histograms and box plots to visualize the measured geometric features. By utilizing cell centroids, WingSegment creates a Voronoi pattern on the wing. Furthermore, the detected boundaries can be exported as FreeCAD macro files, facilitating 3D modeling and further analysis. The accuracy and efficiency of WingSegment are validated through comparisons with established software tools and manual measurements, demonstrating its effectiveness. The results exhibit precise wing segmentation and enable in-depth analysis of wing properties. WingSegment contributes to the advancement of knowledge in insect wing morphology and its applications across various fields

    Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools after Dry Plain Turning of Carbon Steel

    Get PDF
    Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc.), so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM), and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses

    WingAnalogy

    No full text
    WingAnalogy: A Software Tool for High-Precision Measurement of Insect Wing Fluctuating Asymmetry using Computer Vision and Particle Swarm Optimization WingAnalogy is a software package developed in Matlab appdesigner based on computer vision and image processing techniques. This software is specifically designed for analyzing the fluctuating asymmetry of insect wings. Shahab Eshghi developed it as part of his PhD project in the functional morphology and biomechanics department at Christian Albrechts University in Kiel, Germany

    Data publication: Magnetic induction processes in hot Jupiters, application to KELT-9b

    No full text
    This dataset contains ionization and transport values for ultra-hot Jupiter KELT-9b. The transport coefficients are used in the calculation of the atmospheric magnetic field of the planet
    corecore